Advertisement

Chemical Papers

, Volume 69, Issue 9, pp 1187–1192 | Cite as

Reaction kinetics of malachite in ammonium carbamate solution

  • Ying-Bo Mao
  • Jiu-Shuai DengEmail author
  • Shu-Ming Wen
  • Jian-Jun Fang
Original Paper

Abstract

The dissolution of malachite particles in ammonium carbamate (AC) solutions was investigated in a batch reactor, using the parameters of temperature, AC concentration, particle size, and stirring speed. The shrinking core model was evaluated for the dissolution rate increased by decreasing particle size and increasing the temperature and AC concentration. No important effect was observed for variations in stirring speed. Dissolution curves were evaluated in order to test shrinking core models for fluid-solid systems. The dissolution rate was determined as being controlled by surface chemical reaction. The activation energy of the leaching process was determined as 46.04 kJ mol−1.

Keywords

dissolution kinetics malachite ammonium carbamate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A., & Sahu, K. K. (2010). Problems, prospects and current trends of copper recycling in India: An overview. Resources, Conservation and Recycling, 54, 401–416. DOI:  10.1016/j.resconrec.2009.09.005.CrossRefGoogle Scholar
  2. Akcil, A. (2002). A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine, Turkey. Minerals Engineering, 15, 1193–1197. DOI:  10.1016/s0892-6875(02)00268-6.CrossRefGoogle Scholar
  3. Amores, M., Coedo, A. G., & Alguacil, F. J. (1997). Extraction of copper from sulphate solutions by MOC 45: Application to Cu separation from leachates of a copper flue dust. Hydrometallurgy, 47, 99–112. DOI:  10.1016/s0304-386x(97)00038-8.CrossRefGoogle Scholar
  4. Arzutug, M. E., Kocakerim, M. M., & Çopur, M. (2004). Leaching of malachite ore in NH3-saturated water. Industrial & Engineering Chemistry Research, 43, 4118–4123. DOI:  10.1021/ie0342558.CrossRefGoogle Scholar
  5. Ata, O. N., Çolak, S., Ekinci, Z., & Çopur, M. (2001). Determination of the optimum conditions for leaching of malachite ore in H2SO4 solutions. Chemical Engineering & Technology, 24, 409–413. DOI:  10.1002/1521-4125(200104)24:4<409∷AID-CEAT409>3.0.CO;2-0.CrossRefGoogle Scholar
  6. Baba, A. A., & Adekola, F. A. (2010). Hydrometallurgical processing of a Nigerian sphalerite in hydrochloric acid: Characterization and dissolution kinetics. Hydrometallurgy, 101, 69–75. DOI:  10.1016/j.hydromet.2009.12.001.CrossRefGoogle Scholar
  7. Bingöl, D., & Canbazoğlu, M. (2004). Dissolution kinetics of malachite in sulphuric acid. Hydrometallurgy, 72, 159–165. DOI:  10.1016/j.hydromet.2003.10.002.CrossRefGoogle Scholar
  8. Dib, A., & Makhloufi, L. (2004). Cementation treatment of copper in wastewater: mass transfer in a fixed bed of iron spheres. Chemical Engineering and Processing: Process Intensification, 43, 1265–1273. DOI:  10.1016/j.cep.2003.12.006.CrossRefGoogle Scholar
  9. Ekinci, Z., Colak, S., Cakici, A., & Sarac, H. (1998). Leaching kinetics of sphalerite with pyrite in chlorine saturated water. Minerals Engineering, 11, 279–283. DOI:  10.1016/s0892-6875(98)00006-5.CrossRefGoogle Scholar
  10. Ekmekyapar, A., Aktaş, E., Künkül, A., & Demirkiran, N. (2012). Investigation of leaching kinetics of copper from malachite ore in ammonium nitrate solutions. Metallurgical and Materials Transactions B, 43, 764–772. DOI:  10.1007/s11663-012-9670-2.CrossRefGoogle Scholar
  11. Habbache, N., Alane, N., Djerad, S., & Tifouti, L. (2009). Leaching of copper oxide with different acid solutions. Chemical Engineering Journal, 152, 503–508. DOI:  10.1016/j.cej.2009.05.020.CrossRefGoogle Scholar
  12. Jena, P. K., Barbosa-Filho, O., & Vasconcelos, I. C. (1999). Studies on the kinetics of slurry chlorination of a sphalerite concentrate by chlorine gas. Hydrometallurgy, 52, 111–122. DOI:  10.1016/s0304-386x(98)00067-x.CrossRefGoogle Scholar
  13. Künkül, A., Kocakerim, M. M., Yapici, S., & Demirbağ, A. (1994). Leaching kinetics of malachite in ammonia solutions. International Journal of Mineral Processing, 41, 167–182. DOI:  10.1016/0301-7516(94)90026-4.CrossRefGoogle Scholar
  14. Liu, W., Tang, M. T., Tang, C. B., He, J., Yang, S. H., & Yang, J. G. (2010). Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. Transaction of Nonferrous Metal Society of China, 20, 910–917. DOI:  10.1016/s1003-6326(09)60235-1.CrossRefGoogle Scholar
  15. Liu, Z. X., Yin, Z. L., Hu, H. P., & Chen, Q. Y. (2012). Dissolution kinetics of malachite in ammonia/ammonium sulphate solution. Journal of Central South University, 19, 903–910. DOI:  10.1007/s11771-012-1091-5.CrossRefGoogle Scholar
  16. Park, K. H., Mohapatra, D., Reddy, B. R., & Nam, C. W. (2007). A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu—Ni—Co—Fe) matte. Hydrometallurgy, 86, 164–171. DOI:  10.1016/j.hydromet.2006.11.012.CrossRefGoogle Scholar
  17. Schmidt, J. E., Dudis, D. S., & Miller, D. J. (2012). Expendable high energy density thermal management material: Ammonium carbamate. Journal of Thermophysics and Heat Transfer, 26, 345–351. DOI:  10.2514/1.t3776.CrossRefGoogle Scholar
  18. Sun, X. L., Chen, B. Z., Yang, X. Y., & Liu, Y. Y. (2009). Technological conditions and kinetics of leaching copper from complex copper oxide ore. Journal of Central South University of Technology, 16, 936–941. DOI:  10.1007/s11771-009-0156-6.CrossRefGoogle Scholar
  19. Wen, C. Y. (1968). Noncatalytic heterogeneous solid-fluid reaction models. Industrial & Engineering Chemistry, 60, 34–54. DOI:  10.1021/ie50705a007.CrossRefGoogle Scholar
  20. Wu, D. D., Wen, S. M., Yang, J., Deng, J. S., & Jiang, L. (2013). Dissolution kinetics of malachite as an alternative copper source with an organic leach reagent. Journal of Chemical Engineering of Japan, 46, 677–682. DOI:  10.1252/jcej.13we035.CrossRefGoogle Scholar
  21. Yartaşi, A., & Çopur, M. (1996). Dissolution kinetics of copper(II) oxide in ammonium chloride solutions. Minerals Engineering, 9, 693–698. DOI:  10.1016/0892-6875(96)00057-x.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Ying-Bo Mao
    • 1
  • Jiu-Shuai Deng
    • 1
    Email author
  • Shu-Ming Wen
    • 1
  • Jian-Jun Fang
    • 1
  1. 1.State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilisation, Faculty of Land Resource EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations