Advertisement

Chemical Papers

, Volume 69, Issue 9, pp 1211–1218 | Cite as

Polymeric ionic liquids: a strategy for preparation of novel polymeric materials

  • Manoochehr FarzinEmail author
  • Keyvan Nosratzadegan
  • Jamshid Azarnia
  • Mohammad Ferdosi
Original Paper

Abstract

A novel polymeric ionic liquid (PIL), bearing high C-N and N-N content, potentially suitable for new safe energetic materials and catalyst supports was introduced. The PIL was prepared by way of radical co-polymerisation of 1-vinyl-3-p-nitrobenzylimidazolium bromide and 1-vinylimidazole at 80°C using azobisisobutyronitrile (AIBN) as an initiator. The PIL thus produced was successfully transformed into NO3@PIL and N3@PIL for potential application as safe energetic materials and/or catalyst supports. The polymers were obtained in quantitative yields and were characterised by NMR, FTIR, DSC and TGA data. This study reveals the adequate thermal stability of novel salt-based nitrogen-rich polymeric ionic liquids for application as safe energetic materials and/or supports in heterogeneous catalysis.

Keywords

energetic salts polyionic liquid polymer nitrogen-rich polymer catalyst supports 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appetecchi, G. B., Kim, G. T., Montanino, M., Carewska, M., Marcilla, R., Mecerreyes, D., & De Meatza, I. (2010). Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. Journal of Power Sources, 195, 3668–3675. DOI:  10.1016/j.jpowsour.2009.11.146.CrossRefGoogle Scholar
  2. Brazel, C. S., & Rogers, R. D. (Eds.) (2005). Ionic liquids in polymer systems: Solvents, additives, and novel applications (ACS symposium series, Vol. 913). Washington, DC, USA: American Chemical Society.Google Scholar
  3. Chambreau, S. D., Schneider, S., Rosander, M., Hawkins, T., Gallegos, C. J., Pastewait, M. F., & Vaghjiani, G. L. (2008). Fourier transform infrared studies in hypergolic ignition of ionic liquids. The Journal of Physical Chemistry A, 112, 7816–7824. DOI:  10.1021/jp8038175.CrossRefGoogle Scholar
  4. Champagne, P. A., Benhassine, Y., Desroches, J., & Paquin, J. F. (2014). Friedel-Crafts reaction of benzyl fluorides: Selective activation of C-F bonds as enabled by hydrogen bonding. Angewandte Chemie International Edition, 53, 13835–13839. DOI:  10.1002/anie.201406088.CrossRefGoogle Scholar
  5. Cserjési, P., & Bélafi-Bakó, K. (2011). Application of ionic liquids in membrane separation processes, ionic liquids. In A. Kokorin (Ed.), Ionic liquids: Applications and perspectives (Chapter 25, pp. 561–586). Rijeka, Croatia: InTech. DOI:  10.5772/14862.Google Scholar
  6. Demirci, S., & Sahiner, N. (2014). PEI-based ionic liquid colloids for versatile use: Biomedical and environmental applications. Journal of Molecular Liquids, 194, 85–92. DOI:  10.1016/j.molliq.2014.01.015.CrossRefGoogle Scholar
  7. Drake, G., Hawkins, T., Brand, A., Hall, L., Mckay, M., Vij, A., & Ismail, I. (2003). Energetic, low-melting salts of simple heterocycles. Propellants, Explosives, Pyrotechnics, 28, 174–180. DOI:  10.1002/prep.200300002.CrossRefGoogle Scholar
  8. Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI:  10.1021/cr010338r.CrossRefGoogle Scholar
  9. Gordon, C. M. (2001). New developments in catalysis using ionic liquids. Applied Catalysis A: General, 222, 101–117. DOI:  10.1016/s0926-860x(01)00834-1.CrossRefGoogle Scholar
  10. Hardacre, C., & Parvulescu, V. (Eds.) (2014). Catalysis in ionic liquids: From catalyst synthesis to application (RSC catalysis series No. 15). Cambridge, UK: The Royal Society of Chemistry.Google Scholar
  11. He, L., Tao, G. H., Parrish, D. A., & Shreeve, J. M. (2010). Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels. Chemistry — A European Journal, 16, 5736–5743. DOI:  10.1002/chem.200902651.CrossRefGoogle Scholar
  12. Hiskey, M. A., Chavez, D., Naud, D. L., Son, S. F., Berghout, H. L., & Bolme, C. A. (2000). Progress in high-nitrogen chemistry in explosives, propellants and pyrotechnics. In Proceedings of the International Pyrotechnics Seminars, July 12–18, 2000 (Vol. 27, pp. 3–14). Grand Junction, CO, USA. Marshall, TX, USA: IPSUSA Seminars.Google Scholar
  13. Joo, Y. H., Gao, H., Zhang, Y., & Shreeve, J. M. (2010). Inorganic or organic azide-containing hypergolic ionic liquids. Inorganic Chemistry, 49, 3282–3288. DOI:  10.1021/ic902224t.CrossRefGoogle Scholar
  14. Köhler, J., & Meyer, R. (2009). Explosivstoffe: Neunte, uberarbietete und erweiterte Auflage (9th ed.). Weinheim, Germany: Wiley. (in German)Google Scholar
  15. Lewandowski, A., & Świderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. Journal of Power Sources, 194, 601–609. DOI:  10.1016/j.jpowsour.2009.06.089.CrossRefGoogle Scholar
  16. Li, M., Yang, L., Fang, S., Dong, S., Hirano, S., & Tachibana, K. (2011). Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries. Journal of Power Sources, 196, 8662–8668. DOI:  10.1016/j.jpowsour.2011.06.059.CrossRefGoogle Scholar
  17. Marcilla, R., Alcaide, F., Sardon, H., Pomposo, J. A., Pozo-Gonzalo, C., & Mecerreyes, D. (2006). Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochemistry Communications, 8, 482–488. DOI:  10.1016/j.elecom.2006.01.013.CrossRefGoogle Scholar
  18. Marwani, H. M., & Bakhsh, E. M. (2013). Silica gel supported hydrophobic ionic liquid for selective extraction and determination of coumarin. American Journal of Analytical Chemistry, 4, 8–16. DOI:  10.4236/ajac.2013.41002.CrossRefGoogle Scholar
  19. Mehrkesh, A., & Karunanithi, A. T. (2013). Energetic ionic materials: How green are they? A comparative life cycle assessment study. ACS Sustainable Chemistry & Engineering, 1, 448–455. DOI:  10.1021/sc3001383.CrossRefGoogle Scholar
  20. Nielsen, A. T. (1995). Nitrocarbons (Organic nitro chemistry series). New York, NY, USA: Wiley.Google Scholar
  21. Ohno, H., & Ito, K. (1998). Room-temperature molten salt polymers as a matrix for fast ion conduction. Chemistry Letters, 27, 751–752. DOI:  10.1246/cl.1998.751.CrossRefGoogle Scholar
  22. Ohno, H. (2005). Electrochemical aspects of ionic liquids. Hoboken, NJ, USA: WileyCrossRefGoogle Scholar
  23. Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 373, 1–56. DOI:  10.1016/j.apcata.2009.10.008.CrossRefGoogle Scholar
  24. Rogers, R. D., & Seddon, K. R. (2002). Ionic liquids: Industrial applications for green chemistry (ACS symposium series, Vol. 818). Washington, DC, USA: American Chemical Society. DOI:  10.1021/bk-2002-0818.CrossRefGoogle Scholar
  25. Sahiner, N., & Alpaslan, D. (2014). Metal-ion-containing ionic liquid hydrogels and their application to hydrogen production. Journal of Applied Polymer Science, 131, 40183. DOI:  10.1002/app.40183.CrossRefGoogle Scholar
  26. Sahiner, N., Turhan, T., & Lyon, L. A. (2014). ILC (ionic liquid colloids) based on p(4-VP) (poly(4-vinyl pyridine)) microgels: Synthesis, characterization and use in hydrogen production. Energy, 66, 256–263. DOI:  10.1016/j.energy.2013.12.053.CrossRefGoogle Scholar
  27. Schneider, S., Hawkins, T., Rosander, M., Vaghjiani, G., Chambreau, S., & Drake, G. (2008). Ionic liquids as hypergolic fuels. Energy & Fuels, 22, 2871–2872. DOI:  10.1021/ef800286b.CrossRefGoogle Scholar
  28. Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 2001, 2399–2407. DOI:  10.1039/b107270f.CrossRefGoogle Scholar
  29. Singh, R. P., Verma, R. D., Meshri, D. T., & Shreeve, J. M. (2006). Energetic nitrogen-rich salts and ionic liquids. Angewandte Chemie International Edition, 45, 3584–3601. DOI:  10.1002/anie.200504236.CrossRefGoogle Scholar
  30. Singh, R. P., Gao, H., Meshri, D. T., & Shreeve, J. M. (2007). Nitrogen-rich heterocycles. In T. M. Klapötke (Ed.), High energy density materials (Series: Structure and bonding, Vol. 125, pp. 35–83). DOI:  10.1007/430_2006_055.CrossRefGoogle Scholar
  31. Wasserscheid, P., & Welton, T. (Eds.) (2002). Ionic liquids in synthesis. Weinheim, Germany: Wiley.Google Scholar
  32. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI:  10.1021/cr980032t.CrossRefGoogle Scholar
  33. Zhang, Z. C. (2006). Catalysis in ionic liquids. Advances in Catalysis, 49, 153–237. DOI:  10.1016/s0360-0564(05)49003-3.Google Scholar
  34. Zhao, D., Wu, M., Kou, Y., & Min, E. (2002). Ionic liquids: applications in catalysis. Catalysis Today, 74, 157–189. DOI:  10.1016/s0920-5861(01)00541-7.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Manoochehr Farzin
    • 1
    Email author
  • Keyvan Nosratzadegan
    • 1
  • Jamshid Azarnia
    • 2
  • Mohammad Ferdosi
    • 1
  1. 1.Chemistry DepartmentMalek Ashtar University of TechnologyShahinshahr, IsfahanIran
  2. 2.Chemistry DepartmentTarbiat Modares University of TechnologyTehranIran

Personalised recommendations