Chemical Papers

, Volume 69, Issue 9, pp 1176–1186 | Cite as

New bulk liquid membrane oscillator composed of two coupled oscillators with diffusion-mediated physical coupling

  • Maria SzpakowskaEmail author
  • Elżbieta Płocharska-Jankowska
  • Ottó B. Nagy
Original Paper


A new type of bulk liquid membrane system, which represents the first example of a bulk liquid membrane oscillator characterised by the presence of two coupled oscillators, is described. When the benzyldimethyltetradecylammonium chloride surfactant undergoes an oscillatory mass transfer through a nitromethane liquid membrane, a new liquid layer (phase X) appears between the membrane and the acceptor phase. Kinetic analysis provides evidence that the whole system is composed of two coupled oscillators with diffusion-mediated physical coupling. The first component oscillator (based on nitromethane) of lower frequency delivers the driving material to the second one (phase X-based oscillator) leading to additional higher frequency oscillations. A new molecular mechanism is proposed for interpreting the experimental observations. The results might enhance understanding of intercellular communication in biology, where periodic signalling is more efficient than any other type of signalling mode.


phase separation chemical kinetics numerical simulations coupled oscillations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brian, P. L. T. (1971). Effect of Gibbs adsorption on Marangoni instability. AIChE Journal, 17, 765–772. DOI:  10.1002/aic.690170403.CrossRefGoogle Scholar
  2. Cussler, E. L. (1995). Diffusion: Mass transfer in fluid systems. Cambridge: UK: Cambridge University Press.Google Scholar
  3. Epstein, I. R., & Pojman, J. A. (1998). An introduction to non-linear chemical dynamics. New York, NY, USA: Oxford University Press.Google Scholar
  4. Goldbeter, A. (1996). Biochemical oscillations and cellular rhythms. Cambridge: UK: Cambridge University Press.CrossRefGoogle Scholar
  5. Gray, P., & Scott, S. K. (1990). Chemical oscillations and instabilities: Non-linear chemical kinetics. New York, NY, USA: Oxford University Press.Google Scholar
  6. Hennenberg, M., Bisch, P. M., Vignes-Adler, M., & Sanfeld, A. (1979). Mass transfer, Marangoni effect, and instability of interfacial longitudinal waves: I. Diffusional exchanges. Journal of Colloid and Interface Science, 69, 128–137. DOI:  10.1016/0021-9797(79)90087-0.CrossRefGoogle Scholar
  7. Ikezoe, Y., Ishizaki, S., Yui, H., Fujinami, M., & Sawada, T. (2004). Direct observation of chemical oscillation at a water/nitrobenzene interface with a sodium-alkyl-sulfate system. Analytical Sciences, 20, 435–440. DOI:  10.2116/analsci.20.435.CrossRefGoogle Scholar
  8. Kovalchuk, N. M., & Vollhardt, D. (2006). Marangoni instability and spontaneous non-linear oscillations produced at liquid interfaces by surfactant transfer. Advances in Colloid Interface Science, 120, 1–31. DOI:  10.1016/j.cis.2006.01.001.CrossRefGoogle Scholar
  9. Kovalchuk, N. M., & Vollhardt, D. (2007). Instability and spontaneous oscillations by surfactant transfer through a liquid membrane. Colloids and Surfaces A: Physicochemical Engineers Aspects, 309, 231–239. DOI:  10.1016/j.colsurfa.2006.11.040.CrossRefGoogle Scholar
  10. Larter, R. (1990). Oscillations and spatial nonuniformities in membranes. Chemical Reviews, 90, 355–381. DOI:  10.1021/cr00100a002.CrossRefGoogle Scholar
  11. Lavabre, D., Pradines, V., Micheau, J. C., & Pimienta, V. (2005). Periodic Marangoni instability in surfactant (CTAB) liquid/liquid mass transfer. The Journal of Physical Chemistry B, 109, 7582–7586. DOI:  10.1021/jp045197m.CrossRefGoogle Scholar
  12. Marcus, Y. (1977). Introduction to liquid state chemistry. London, UK: Wiley.Google Scholar
  13. Ostrovsky, M. V., & Ostrovsky, M. J. (1983). Dynamic interfacial tension in binary systems and spontaneous pulsation of individual drops by their dissolution. Journal of Colloid and Interface Science, 93, 392–401. DOI:  10.1016/0021-9797(83)90422-8.CrossRefGoogle Scholar
  14. Pimienta, V., Etchenique, R., & Buhse, T. (2001). On the origin of electrochemical oscillations in the picric acid/CTAB two-phase system. The Journal of Physical Chemistry A, 105, 10037–10044. DOI:  10.1021/jp013350w.CrossRefGoogle Scholar
  15. Płocharska-Jankowska, E., Szpakowska, M., Mátéfi-Tempfli, S., & B. Nagy, O. (2005). On the possibility of molecular recognition of taste substances studied by Gábor analysis of oscillations. Biophysical Chemistry, 114, 85–93. DOI:  10.1016/j.bpc.2004.10.004.CrossRefGoogle Scholar
  16. Płocharska-Jankowska, E., Szpakowska, M., Mátéfi-Tempfli, S. & B. Nagy, O. (2006). A new approach to the spectral analysis of liquid membrane oscillators by Gábor transformation. The Journal of Physical Chemistry B, 110, 289–294. DOI:  10.1021/jp0557870.CrossRefGoogle Scholar
  17. Rastogi, R. P., & Srivastava, R. C. (2001). Interface-mediated oscillatory phenomena. Advances in Colloid and Interface Science, 93, 1–75. DOI:  10.1016/s0001-8686(00)00037-3.CrossRefGoogle Scholar
  18. Reichardt, C. (1979). Solvent effects in organic chemistry. Weinheim, Germany: Verlag Chemie.Google Scholar
  19. Sternling, C. V., & Scriven, L. E. (1959). Interfacial turbulence: Hydrodynamic instability and Marangoni effect. AIChE Journal, 5, 514–520. DOI:  10.1002/aic.690050421.CrossRefGoogle Scholar
  20. Suzuki, T., & Kawakubo, T. (1992). Convective instability and electric potential oscillation in a water-oil-water system. Biophysical Chemistry, 45, 153–159. DOI:  10.1016/0301-4622(92)87007-6.CrossRefGoogle Scholar
  21. Szpakowska, M., Czaplicka, I., Szwacki, J., & B. Nagy, O. (2002). Oscillatory phenomena in systems with bulk liquid membranes. Chemical Papers, 56, 20–23.Google Scholar
  22. Szpakowska, M., Czaplicka, I., Płocharska-Jankowska, E., & B. Nagy, O. (2003). Contribution to the mechanism of liquid membrane oscillators involving cationic surfactant. Journal of Colloid and Interface Science, 261, 451–455. DOI:  10.1016/s0021-9797(03)00080-8.CrossRefGoogle Scholar
  23. Szpakowska, M., Płocharska-Jankowska, E., & B. Nagy, O. (2005). On the new possibility of applying oscillating liquid membrane systems for molecular recognition substances responsible for taste. Desalination, 173, 61–67. DOI:  10.1016/j.desal.2004.06.209.CrossRefGoogle Scholar
  24. Szpakowska, M., Magnuszewska, A., & Płocharska-Jankowska, E. (2006a). Possibility of discrimination of sour substances by liquid membrane oscillators. Desalination, 198, 353–359. DOI:  10.1016/j.desal.2006.04.003.CrossRefGoogle Scholar
  25. Szpakowska, M., Czaplicka, I., & B. Nagy, O. (2006b). Mechanism of four-phase liquid membrane oscillator containing hexadecyltrimethylammonium bromide. The Journal of Physical Chemistry A, 110, 7286–7292. DOI:  10.1021/jp057349z.CrossRefGoogle Scholar
  26. Szpakowska, M., Magnuszewska, A., & B. Nagy, O. (2008). Mechanism of nitromethane liquid membrane oscillator containing sodium oleate. Journal of Colloid and Interface Science, 325, 494–499. DOI:  10.1016/j.jcis.2008.05.059.CrossRefGoogle Scholar
  27. Szpakowska, M., Płocharska-Jankowska, E., & B. Nagy, O. (2009). Molecular mechanism and chemical kinetic description of nitrobenzene liquid membrane oscillator containing benzyldimethyltetradecylammonium chloride surfactant. The Journal of Physical Chemistry B, 113, 15503–15512. DOI:  10.1021/jp9066873.CrossRefGoogle Scholar
  28. Tatsuno, Y., Kozuru, T., Yoshida, Y., & Maeda, K. (2012). Propagation and synchronization of potential oscillations in multiple liquid membrane systems. Analytical Science, 28, 1145–1151. DOI:  10.2116/analsci.28.1145.CrossRefGoogle Scholar
  29. Toko, K., Yoshikawa, K., Tsukiji, M., Nosaka, M., & Yamafuji, K. (1985). On the oscillatory phenomenon in an oil/water interface. Biophysical Chemistry, 22, 151–158. DOI:  10.1016/0301-4622(85)80037-5.CrossRefGoogle Scholar
  30. Weast, R. C., Astle, M. J., & Beyer, W. H. (1984). CRC handbook of chemistry and physics (64th ed.). Boca Ration, FL, USA: CRC Press.Google Scholar
  31. Yoshikawa, K., & Matsubara, Y. (1983). Spontaneous oscillation of pH and electric potential in an oil-water system. Journal of the American Chemical Society, 105, 5967–5969. DOI:  10.1021/ja00357a001.CrossRefGoogle Scholar
  32. Yoshikawa, K., Shoji, M., Nakata, S., Maeda, S., & Kawakami, H. (1988). An excitable liquid membrane possibly mimicking the sensing mechanism of taste. Langmuir, 4, 759–762. DOI:  10.1021/la00081a046.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Maria Szpakowska
    • 1
    Email author
  • Elżbieta Płocharska-Jankowska
    • 1
  • Ottó B. Nagy
    • 1
  1. 1.Department of Quality Management and Commodity Science, Faculty of Management and EconomicsGdańsk University of TechnologyNarutowiczaPoland

Personalised recommendations