Chemical Papers

, Volume 69, Issue 9, pp 1231–1236 | Cite as

A facile, highly efficient and novel method for synthesis of 5-substituted 1H-tetrazoles catalysed by copper(I) chloride

  • İbrahim Esirden
  • Erhan Başar
  • Muharrem KayaEmail author
Original Paper


The present study on tetrazole compounds, which have a wide area of application, proposes a new, simple and highly effective method. A series of 5-substituted 1H-tetrazoles were synthesised in DMF via the [3 + 2] cycloaddition reaction, in which different aryl nitriles with sodium azide were used and copper(I) chloride served as a catalyst. Short reaction times, high yields and simple procedures rendered this method attractive and useful for the organic synthesis of 5-substituted 1H-tetrazoles. A further advantage was the use of an environmentally friendly catalyst.


5-substituted 1H-tetrazoles copper(I) chloride sodium azide [3 + 2] cycloaddition aryl nitriles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2017_690091231_MOESM1_ESM.docx (2 mb)
Supplementary material, approximately 2085 KB.


  1. Ahmad Malik, M., Al-Thabaiti, S. A., & Malik, M. A. (2012). Synthesis, structure optimization and antifungal screening of novel tetrazole ring bearing acyl-hydrazones. International Journal of Molecular Sciences, 13, 10880–10898. DOI:  10.3390/ijms130910880.CrossRefGoogle Scholar
  2. Akhlaghinia, B., & Rezazadeh, S. (2012). A novel approach for the synthesis of 5-substituted-1H-tetrazoles. Journal of the Brazilian Chemical Society, 23, 2197–2203. DOI:  10.1590/s0103-50532013005000005.CrossRefGoogle Scholar
  3. Amantini, D., Beleggia, R., Fringuelli, F., Pizzo, F., & Vaccoro, L. (2004). TBAF-catalyzed synthesis of 5-substituted 1H-tetrazoles under solventless conditions. Journal of Organic Chemistry, 69, 2896–2898. DOI:  10.1021/jo0499468.CrossRefGoogle Scholar
  4. Bakunova, S. M., Bakunov, S. A., Patrick, D. A., Suresh Kumar, E. V. K., Ohemeng, K. A., Bridges, A. S., Wenzler, T., Barszcz, T., Jones, S. K., Werbovetz, K. A., Brun, R., & Tidwell, R. R. (2009). Structure-activity study of pentamidine analogues as antiprotozoal agents. Journal of Medicinal Chemistry, 52, 2016–2035. DOI:  10.1021/jm801547t.CrossRefGoogle Scholar
  5. Ben Achma, R., Ghorbel, A., Dafinov, A., & Medina, F. (2008). Copper-supported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol. Applied Catalysis A: General, 349, 20–28. DOI:  10.1016/j.apcata.2008.07.021.CrossRefGoogle Scholar
  6. Bonnamour, J., & Bolm, C. (2009). Iron salts in the catalyzed synthesis of 5-substituted 1H-tetrazoles. Chemistry — A European Journal, 15, 4543–4545. DOI:  10.1002/chem.200900169.CrossRefGoogle Scholar
  7. Butler, R. N. (1984). Comprehensive heterocyclic chemistry. Oxford, UK: Pergamon Press.Google Scholar
  8. Carriazo, J. G., Guelou, E., Barrault, J., Tatibouët, J. M., & Moreno, S. (2003). Catalytic wet peroxide oxidation of phenol over Al—Cu or Al—Fe modified clays. Applied Clay Science, 22, 303–308. DOI:  10.1016/s0169-1317(03)00124-8.CrossRefGoogle Scholar
  9. Chen, Z. X., & Xiao, H. M. (1999). Theoretical study on tetrazole and its derivatives: 4. Ab initio study on hydroxyl derivatives of tetrazole. Propellants, Explosives, Pyrotechnics, 24, 319–324. DOI:  10.1002/(SICI)1521-4087(199910)24:5<319∷AID-PREP319>3.0.CO;2-K.CrossRefGoogle Scholar
  10. Clark, P. D., Mesher, S. T. E., Primak, A., & Yao, H. (1997). C—S bond formation in aromatic substrates using Mn(II)-promoted montmorillonite clays. Catalysis Letters, 43, 79–82. DOI:  10.1023/a:1019046213969.CrossRefGoogle Scholar
  11. Crosignani, S., Jorand-Lebrun, C., Campbell, G., Prêtre, A., Grippi-Vallotton, T., Quattropani, A., Bouscary-Desforges, G., Bombrun, A., Missotten, M., Humbert, Y., Frémaux, C., Pâquet, M., Harkani, K. E., Bradshaw, C. G., Cleva, C., Abla, N., Daff, H., Schott, O., Pittet, P. A., Arrighi, J. F., Gaudet, M., & Johnson, Z. (2011). Discovery of a novel series of CRTH2 (DP2) receptor antagonists devoid of carboxylic acids. ACS Medicinal Chemistry Letters, 2, 938–942. DOI:  10.1021/ml200223s.CrossRefGoogle Scholar
  12. (Çelik, G. D., Disli, A., Oner, Y., & Acik, L. (2013). Synthesis of some novel amino and thiotetrazole purine derivatives and investigation of their antimicrobial activity and DNA interactions. Medicinal Chemistry Research, 22, 1470–1479. DOI:  10.1007/s00044-012-0140-9.CrossRefGoogle Scholar
  13. Damavarapu, R., Klapötke, T. M., Stierstorfer, J., & Tarantik, K. R. (2010). Barium salts of tetrazole derivatives — synthesis and characterization. Propellants, Explosives, Pyrotechnics, 35, 395–406. DOI:  10.1002/prep.200900058.CrossRefGoogle Scholar
  14. Dişli, A., & Salman, M. (2009). Synthesis of some new 5-substituted 1H-tetrazoles. Russian Journal of Organic Chemistry, 45, 151–153. DOI:  10.1134/s1070428009010217.CrossRefGoogle Scholar
  15. Dişli, A., Mercan, S., & Yavuz, S. (2013). Synthesis and antimicrobial activity of new pyrimidine derivatives incorporating 1 H-tetrazol-5-ylthio moiety. Journal of Heterocyclic Chemistry, 50, 1446. DOI:  10.1002/jhet.1585.CrossRefGoogle Scholar
  16. Frija, L. M. T., Ismael, A., & Cristiano, M. L. S. (2010). Photochemical transformations of tetrazole derivatives: Applications in organic synthesis. Molecules, 15, 3757–3774. DOI:  10.3390/molecules15053757.CrossRefGoogle Scholar
  17. Hajra, S., Sinha, D., & Bhowmick, M. (2007). Metal triflate catalyzed reactions of alkenes, NBS, nitriles, and TMSN3: Synthesis of 1,5-disubstituted tetrazoles. Journal of Organic Chemistry, 72, 1852–1855. DOI:  10.1021/jo062432j.CrossRefGoogle Scholar
  18. Jin, T., Kitahara, F., Kamijo, S., & Yamamoto, Y. (2008). Copper-catalyzed synthesis of 5-substituted 1H-tetrazoles via the [3+2] cycloaddition of nitriles and trimethylsilyl azide. Tetrahedron Letters, 49, 2824–2827. DOI:  10.1016/j.tetlet.2008.02.115.CrossRefGoogle Scholar
  19. Kaplancikli, Z. A., Yurttaş, L., Özdemir, A., Turan-Zitouni, G., İşcan, G., Akalın, G., & Abu Mohsen, U. (2014a). Synthesis, anticandidal activity and cytotoxicity of some tetrazole derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 29, 43–48. DOI:  10.3109/14756366.2012.752363.CrossRefGoogle Scholar
  20. Kaplancıklı, Z. A., Yurttaş, L., Özdemir, A., Turan-Zitouni, G., Çiftçi, A., Ulusoylar Yıldırım, S., & Mohsen, U. A. (2014b). Synthesis and antiproliferative activity of new 1,5-disubstituted tetrazoles bearing hydrazone moiety. Medicinal Chemistry Research, 23, 1067–1075. DOI:  10.1007/s00044-013-0717-y.CrossRefGoogle Scholar
  21. Keith, J. M. (2006). One-step conversion of pyridine N-oxides to tetrazolo[1,5-a]pyridines. Journal of Organic Chemistry, 71, 9540–9543. DOI:  10.1021/jo061819j.CrossRefGoogle Scholar
  22. Lakshmi Kantam, M., Shiva Kumar, K. B., & Sridhar, C. (2005). Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles. Advanced Synthesis & Catalysis, 347, 1212–1214. DOI:  10.1002/adsc.200505011.CrossRefGoogle Scholar
  23. Lakshmi Kantam, M., Balasubramanyam, V., & Shiva Kumar, K. B. (2006a). Zinc hydroxyapatite-catalyzed efficient synthesis of 5-substituted 1H-tetrazoles. Synthetic Communications, 36, 1809–1814. DOI:  10.1080/00397910600619630.CrossRefGoogle Scholar
  24. Lakshmi Kantam, M., Shiva Kumar, K. B., & Raja, K. P. (2006b). An efficient synthesis of 5-substituted 1H-tetrazoles using Zn/Al hydrotalcite catalyst. Journal of Molecular Catalysis A: Chemical, 247, 186–188. DOI:  10.1016/j.molcata.2005.11.046.CrossRefGoogle Scholar
  25. Lang, L., Li, B. J., Liu, W., Jiang, L., Xu, Z., & Yin, G. (2010). Mesoporous ZnS nanospheres: a high activity heterogeneous catalyst for synthesis of 5-substituted 1H-tetrazoles from nitriles and sodium azide. Chemical Communications, 46, 448–450. DOI:  10.1039/b912284b.CrossRefGoogle Scholar
  26. Matthews, D. P., Green, J. E., & Shuker, A. J. (2000). Parallel synthesis of alkyl tetrazole derivatives using solid support chemistry. Combinatorial Chemistry, 2, 19–23. DOI:  10.1021/cc990035z.CrossRefGoogle Scholar
  27. Özkan, H., Yavuz, S., Dişli, A., Yıldırır, Y., & Türker, L. (2007). Synthesis of novel 5-aryl-1H-tetrazoles. Heteroatom Chemistry, 18, 255–258. DOI:  10.1002/hc.20293.CrossRefGoogle Scholar
  28. Qi, G., & Dai, Y. (2010). γ-Fe2O3: A magnetic separable catalyst for synthesis of 5-substituted 1H-tetrazoles from nitriles and sodium azide. Chinese Chemical Letters, 21, 1029–1032. DOI:  10.1016/j.cclet.2010.05.003.CrossRefGoogle Scholar
  29. Rama, V., Kanagaraj, K., & Pitchumani, K. (2011). Syntheses of 5-substituted 1H-tetrazoles catalyzed by reusable CoY zeolite. Journal of Organic Chemistry, 76, 9090–9095. DOI:  10.1021/jo201261w.CrossRefGoogle Scholar
  30. Shie, J. J., & Fang, J. M. (2007). Microwave-assisted one-pot tandem reactions for direct conversion of primary alcohols and aldehydes to triazines and tetrazoles in aqueous media. Journal of Organic Chemistry, 72, 3141–3144. DOI:  10.1021/jo0625352.CrossRefGoogle Scholar
  31. Shinde, A. B., Shrigadi, N. B., & Samant, S. D. (2004). tert-Butylation of phenols using tert-butyl alcohol in the presence of FeCl3-modified montmorillonite K10. Applied Catalysis A: General, 276, 5–8. DOI:  10.1016/s0926-860x(03)00612-4.CrossRefGoogle Scholar
  32. Su, W. K., Hong, Z., Shan, W. G., & Zhang, X. X. (2006). A facile synthesis of 1-substituted-1H-1,2,3,4-tetrazoles catalyzed by ytterbium triflate hydrate. European Journal of Organic Chemistry, 12, 2723–2726. DOI:  10.1002/ejoc.200600007.CrossRefGoogle Scholar
  33. Varma, R. S. (2002). Clay and clay-supported reagents in organic synthesis. Tetrahedron, 58, 1235–1255. DOI:  10.1016/s0040-4020(01)01216-9.CrossRefGoogle Scholar
  34. Venkateshwarlu, G., Premalatha, A., Rajanna, K. C., & Saiprakash, P. K. (2009). Cadmium chloride as an efficient catalyst for neat synthesis of 5-substituted 1H-tetrazoles. Synthetic Communications, 39, 4479–4485. DOI:  10.1080/00397910902917682.CrossRefGoogle Scholar
  35. Wittenberger, S. J., & Donner, B. G. (1993). Dialkyltin oxide mediated addition of trimethylsilyl azide to nitriles. A novel preparation of 5-substituted tetrazoles. Journal of Organic Chemistry, 58, 4139–4141.CrossRefGoogle Scholar
  36. Yapuri, U., Palle, S., Gudaparthi, O., Narahari, S. R., Rawat, D. K., Mukkanti, K., & Vantikommu, J. (2013). Ligand-free nano copper oxide catalyzed cyanation of aryl halides and sequential one-pot synthesis of 5-substituted-1H-tetrazoles. Tetrahedron Letters, 54, 4732–4734. DOI:  10.1016/j.tetlet.2013.06.107.CrossRefGoogle Scholar
  37. Yavuz, S., Aydın, Ö., Çete, S., Dişli, A., & Yıldırır, Y. (2010). Synthesis and antimicrobial activity studies of some novel substituted phenylhydrazono-1H-tetrazol-5-yl-acetonitriles. Medicinal Chemistry Research, 19, 120–126. DOI:  10.1007/s00044-009-9177-9.CrossRefGoogle Scholar
  38. Yavuz, S., Ünal, Y., Pamir, Ö., Yılmazer, D., Kurtipek, Ö., Kavutçu, M., Arslan, M., Ark, M., & Yıldırır, Y. (2013). Synthesis and pharmacological evaluation of some novel thebaine derivatives: N-(tetrazol-1H-5-yl)-6,14-endoethenotetrahydrothebaine incorporating the 1,3,4-oxadiazole or the 1,3,4-thiadiazole moiety. Archiv der Pharmazie, 346, 455–462. DOI:  10.1002/ardp.201200451.CrossRefGoogle Scholar
  39. Yıldırır, Y., Us, M. F., Çolak, N., Özkan, H., Yavuz, S., Disli, A., Ozturk, S., & Turker, L. (2009). The synthesis and investigation of the antimicrobial activity of some new phenylselanyl-1-(toluene-4-sulfonyl)-1H-tetrazole derivatives. Medicinal Chemistry Research, 18, 91–97. DOI:  10.1007/s00044-008-9110-7.CrossRefGoogle Scholar
  40. Yildirir, Y., Pamir, Ö., Yavuz, S., & Dişli, A. (2013). Synthesis and characterization of new thebaine derivatives as potential opioid agonists and antagonists: 2-[N-(1H-tetrazol-5-yl)-6,14-endo-etheno-6,7,8,14-tetrahydrothebaine-7α-yl]-5-phenyl-1, 3,4-oxadiazoles. Journal of Heterocyclic Chemistry, 50, E93–E99. DOI:  10.1002/jhet.1074.CrossRefGoogle Scholar
  41. Yin, W. P., & Shi, M. (2005). Nitration of phenolic compounds by metal-modified montmorillonite KSF. Tetrahedron, 31, 10861–10867. DOI:  10.1016/j.tet.2005.09.027.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of Arts and ScienceDumlupınar UniversityKütahyaTurkey
  2. 2.Biochemistry Department, Faculty of Arts and ScienceDumlupınar UniversityKütahyaTurkey

Personalised recommendations