Skip to main content
Log in

Formation of a vanillic Mannich base — theoretical study

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

One-pot anti-Mannich reaction of vanillin, aniline and cyclohexanone was successfully catalyzed by ionic liquid triethanolammonium chloroacetate, at room temperature. Yield of the obtained Mannich base was very good and excellent diastereoselectivity was achieved. Mechanism of the reaction was investigated using the density functional theory. The reaction started with a nucleophilic attack of aniline nitrogen at the carbonyl group of vanillin. The intermediate α-amino alcohol formed in this way was further subjected to protonation by the triethanolammonium ion yielding the imminium ion. Theoretically, the obtained imminium ion and the enol form of cyclohexanone can build the protonated Mannich base via the anti and syn pathways. The chloroacetic anion spontaneously abstracts the proton yielding the final product of the reaction anti 2-[1-(N-phenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methylcyclohexanone (MB-H). The syn pathway requires lower activation energy but the anti pathway yields a thermodynamically more stable product, which implies that the examined Mannich reaction is thermodynamically controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2002). Quaternary ammonium zinc- or tin-containing ionic liquids: Water insensitive, recyclable catalysts for Diels-Alder reactions. Green Chemistry, 4, 24–26. DOI: 10.1039/b108431c.

    Article  CAS  Google Scholar 

  • Aggarwal, A., Lancaster, N. L., Sethi, A. R., & Welton, T. (2002). The role of hydrogen bonding in controlling the selectivity of Diels-Alder reactions in room temperature ionic liquids. Green Chemistry, 4, 517–520. DOI: 10.1039/b206472c.

    Article  CAS  Google Scholar 

  • Akiyama, T., Takaya, J., & Kagoshima, H. (2001). A highly stereo-divergent Mannich-type reaction catalyzed by Brønsted acid in aqueous media. Tetrahedron Letters, 42, 4025–4028. DOI: 10.1016/s0040-4039(01)00648-7.

    Article  CAS  Google Scholar 

  • Arend, M., Westermann, B., & Risch, N. (1998). Modern variants of the Mannich reaction. Angewandte Chemie International Edition, 37, 1044–1070. DOI: 10.1002/(sici)1521-3773(19980504)37:8<1044∷aid-anie1044>3.0.co;2-e.

    Article  Google Scholar 

  • Azuma, T., Kobayashi, Y., Sakata, K., Sasamori, T., Tokitoh, N., & Takemoto, Y. (2014). Synthesis and characterization of binary-complex models of ureas and 1,3-dicarbonyl compounds: Deeper insights into reaction mechanisms using snap-shot structural analysis. The Journal of Organic Chemistry, 79, 1805–1817. DOI: 10.1021/jo4028775.

    Article  CAS  Google Scholar 

  • Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 102, 1995–2001. DOI: 10.1021/jp9716997.

    Article  CAS  Google Scholar 

  • Chang, Q., Zhou, J., & Gan, L. H. (2012). Theoretical study on the mechanisms of proline-catalyzed Mannich reaction between acetaldehyde and N-Boc imines. Journal of Physical Organic Chemistry, 25, 667–673. DOI: 10.1002/poc.2898.

    Article  CAS  Google Scholar 

  • Chiappe, C., & Pieraccini, D. (2005). Ionic liquids: Solvent properties and organic reactivity. Journal of Physical Organic Chemistry, 18, 275–297. DOI: 10.1002/poc.863.

    Article  CAS  Google Scholar 

  • Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C., & Davis, J. H. (2002). Novel Brønsted acidic ionic liquids and their use as dual solvent — catalysts. Journal of the American Chemical Society, 124, 5962–5963. DOI: 10.1021/ja026290w.

    Article  CAS  Google Scholar 

  • Córdova, A. (2004). The direct catalytic asymmetric Mannich reaction. Accounts of Chemical Research, 37, 102–112. DOI: 10.1021/ar030231l.

    Article  Google Scholar 

  • Cossi, M., Rega, N., Scalmani, G., & Barone, V. (2003). Energies, structures and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry, 24, 669–681. DOI: 10.1002/jcc.10189.

    Article  CAS  Google Scholar 

  • Cota, I., Gonzalez-Olmos, R., Iglesias, M., & Medina, F. (2007). New short aliphatic chain ionic liquids: Synthesis, physical properties and catalytic activity in aldol condensations. The Journal of Physical Chemistry B, 111, 12468–12477. DOI: 10.1021/jp073963u.

    Article  CAS  Google Scholar 

  • Dong, F., Jun, L., Zhou, X. L., & Liu, Z. L. (2007). Mannich reaction in water using acidic ionic liquid as recoverable and reusable catalyst. Catalysis Letters, 116, 76–80. DOI: 10.1007/s10562-007-9095-8.

    Article  Google Scholar 

  • Fang, D., Gong, K., Zhang, D. Z., & Liu, Z. L. (2009). One-pot, three-component Mannich-type reaction catalyzed by functionalized ionic liquid. Monatshefte für Chemie — Chemical Monthly, 140, 1325–1329. DOI: 10.1007/s00706-009-0182-y.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 [computer software]. Wellingford, CT, USA: Gaussian Inc. Wallingford CT.

    Google Scholar 

  • Fu, A. P., Li, H. L., Si, H. Z., Yuan, S. P., & Duan, Y. B. (2008). Theoretical studies of stereoselectivities in the direct syn- and anti-Mannich reactions catalyzed by different amino acids. Tetrahedron: Asymmetry, 19, 2285–2292. DOI: 10.1016/j.tetasy.2008.09.023.

    Article  CAS  Google Scholar 

  • Gong, K., Fang, D., Wang, H. L., & Liu, Z. L. (2007). Basic functionalized ionic liquid catalyzed one-pot Mannich-type reaction: Three component synthesis of β-amino carbonyl compounds. Monatshefte für Chemie — Chemical Monthly, 138, 1195–1198. DOI: 10.1007/s00706-007-0767-2.

    Article  CAS  Google Scholar 

  • Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3, 156–164. DOI: 10.1039/b103275p.

    Article  CAS  Google Scholar 

  • Ibrahem, I., Zou, W. B., Casas, J., Sundén, H., & Córdova, A. (2006). Direct organocatalytic enantioselective α-aminomethylation of ketones. Tetrahedron, 62, 357–364. DOI: 10.1016/j.tet.2005.08.113.

    Article  CAS  Google Scholar 

  • Iglesias, M., Gonzalez-Olmos, R., Cota, I., & Medina, F. (2010). Brønsted ionic liquids: Study of physico-chemical properties and catalytic activity in aldol condensations. Chemical Engineering Journal, 162, 802–808. DOI: 10.1016/j.cej.2010.06.008.

    Article  CAS  Google Scholar 

  • Janey, J. M., Hsiao, Y., & Armstrong, J. D. (2006). Proline-catalyzed, asymmetric Mannich reactions in the synthesis of a DPP-IV inhibitor. The Journal of Organic Chemistry, 71, 390–392. DOI: 10.1021/jo0519458.

    Article  CAS  Google Scholar 

  • Kantam, M. L., Rajasekhar, C. V., Gopikrishna, G., Rajender Reddy, K., & Choudary, B. M. (2006). Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions. Tetrahedron Letters, 47, 5965–5967. DOI: 10.1016/j.tetlet.2006.06.042.

    Article  CAS  Google Scholar 

  • Keskin, S., Kayrak-Talay, D., Akman, U., & Hortaçsu, Ö. (2007). A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluids, 43, 150–180. DOI: 10.1016/j.supflu.2007.05.013.

    Article  CAS  Google Scholar 

  • Kumar, A., & Pawar, S. S. (2004). Converting exo-selective Diels-Alder reaction to endo-selective in chloroloaluminate ionic liquids. The Journal of Organic Chemistry, 69, 1419–1420. DOI: 10.1021/jo035038j.

    Article  CAS  Google Scholar 

  • List, B., Pojarliev, P., Biller, W. T., & Martin, H. J. (2002). The proline-catalyzed direct asymmetric three-component Mannich reaction: Scope, optimization and application to the highly enantioselective synthesis of 1,2-amino alcohols. Journal of the American Chemical Society, 124, 827–833. DOI: 10.1021/ja0174231.

    Article  CAS  Google Scholar 

  • Liu, B. Y., Xu, D. Q., Dong, J. F., Yang, H. L., Zhao, D. S., Luo, S. P., & Xu, Z. Y. (2007). Highly efficient AILs/l-proline synergistic catalyzed three-component asymmetric Mannich reaction. Synthetic Communications, 37, 3003–3010. DOI: 10.1080/00397910601163976.

    Article  CAS  Google Scholar 

  • Loh, T. P., Liung, S. B. K. W., Tan, K. L., & Wei, L. L. (2000). Three component synthesis of β-amino carbonyl compounds using indium trichloride-catalyzed one-pot Mannich-type reaction in water. Tetrahedron, 56, 3227–3237. DOI: 10.1016/s0040-4020(00)00221-0.

    Article  CAS  Google Scholar 

  • Loh, T. P., & Chen, S. L. (2002). InCl3-Catalyzed three-component asymmetric Mannich-type reaction in methanol. Organic Letters, 4, 3647–3650. DOI: 10.1021/ol0265968.

    Article  CAS  Google Scholar 

  • Manabe, K., Mori, Y., Kobayashi, S. (2001). Three-component carbon-carbon bond-forming reactions catalyzed by a Brønsted acid — surfactant-combined catalyst in water. Tetrahedron, 57, 2537–2544. DOI: 10.1016/s0040-4020(01)00081-3.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, C., Datta, A., & Butcher, R. J. (2009). Highly efficient one-pot, three-component Mannich reaction catalysed by boric acid and glycerol in water with major “syn” diastereoselectivity. Tetrahedron Letters, 50, 4246–4250. DOI: 10.1016/j.tetlet.2009.04.135.

    Article  CAS  Google Scholar 

  • Parasuk, W., & Parasuk, V. (2008). Theoretical investigations on the stereoselectivity of the proline catalyzed Mannich reaction in DMSO. The Journal of Organic Chemistry, 73, 9388–9392. DOI: 10.1021/jo801872w.

    Article  CAS  Google Scholar 

  • Petrović Z. D., Simijonović, D., Petrović, V. P., & Marković, S. (2010). Diethanolamine and N,N-diethylethanolamine ionic liquids as precatalyst-precursors and reaction media in green Heck reaction protocol. Journal of Molecular Catalysis A, 327, 45–50. DOI: 10.1016/j.molcata.2010.05.010.

    Article  Google Scholar 

  • Petrović Z. D., Marković, S., Petrović, V. P., & Simijonović, D. (2012). Triethanolammonium acetate as a multifunctional ionic liquid in the palladium-catalyzed green Heck reaction. Journal of Molecular Modeling, 18, 433–440. DOI: 10.1007/s00894-011-1052-1.

    Article  Google Scholar 

  • Petrović V. P., Simijonović, D., Živanović, M. N., Košarić, J. V., Petrović, Z. D., Marković, S., & Marković, S. D. (2014). Vanillic Mannich bases: Synthesis and screening of biological activity. Mechanistic insight into the reaction with 4-chloroaniline. RSC Advances, 4, 24635–24644. DOI: 10.1039/c4ra03909b.

    Article  Google Scholar 

  • Phukan, P., Kataki, D., & Chakraborty, P. (2006). Direct synthesis of Cbz-protected β-amino ketones by iodine-catalyzed three-component condensation of aldehydes, ketones and benzyl carbamate. Tetrahedron Letters, 47, 5523–5525. DOI: 10.1016/j.tetlet.2006.05.136.

    Article  CAS  Google Scholar 

  • Sahoo, S., Joseph, T., & Halligudi, S. B. (2006). Mannich reaction in Brønsted acidic ionic liquid: A facile synthesis of β-amino carbonyl compounds. Journal of Molecular Catalysis A, 244, 179–182. DOI: 10.1016/j.molcata.2005.09.012.

    Article  CAS  Google Scholar 

  • Shariati, A., & Peters, C. J. (2005). High-pressure phase equilibria of systems with ionic liquids. The Journal of Supercritical Fluids, 34, 171–176. DOI: 10.1016/j.supflu.2004.11.011.

    Article  CAS  Google Scholar 

  • Shariati, A., Gutkowski, K., & Peters, C. J. (2005). Comparison of the phase behavior of some selected binary systems with ionic liquids. AIChE Journal, 51, 1532–1540. DOI: 10.1002/aic.10384.

    Article  CAS  Google Scholar 

  • Simijonović, D., Petrović, Z. D., & Petrović, V. P. (2013). Some physico-chemical properties of ethanolamine ionic liquids: Behavior in different solvents. Journal of Molecular Liquids, 179, 98–103. DOI: 10.1016/j.molliq.2012.12.020.

    Article  Google Scholar 

  • Singh, R., Sharma, M., Mamgain, R., & Rawat, D. S. (2008). Ionic liquids: A versatile medium for palladium-catalyzed reactions. Journal of the Brazilian Chemical Society, 19, 357–379. DOI: 10.1590/s0103-50532008000300002.

    Article  CAS  Google Scholar 

  • Touré, B. B., & Hall, D. G. (2009). Natural product synthesis using multicomponent reaction strategies. Chemical Reviews, 109, 4439–4486. DOI: 10.1021/cr800296p.

    Article  Google Scholar 

  • Wang, L. M., Han, J. W., Sheng, J., Tian, H., & Fan, Z. Z. (2005). Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot Mannich reaction: Three component synthesis of β-amino carbonyl compounds. Catalysis Communications, 6, 201–204. DOI: 10.1016/j.catcom.2004.12.009.

    Article  CAS  Google Scholar 

  • Xiao, Y., & Malhotra, S. V. (2005). Friedel-Crafts alkylation reactions in pyridinium-based ionic liquids. Journal of Molecular Catalysis A, 230, 129–133. DOI: 10.1016/j.molcata.2004.12.015.

    Article  CAS  Google Scholar 

  • Yalalov, D. A., Tsogoeva, S. B., Shubina, T. E., Martynova, I. M., & Clark, T. (2008). Evidence for an enol mechanism in a highly enantioselective Mannich-type reaction catalyzed by primary amine-thiourea. Angewandte Chemie International Edition, 47, 6624–6628. DOI: 10.1002/anie.200800849.

    Article  CAS  Google Scholar 

  • Yang, Y. Y., Shou, W. G., & Wang, Y. G. (2006). Synthesis of β-amino carbonyl compounds via a Zn(OTf)2-catalyzed cascade reaction of anilines with aromatic aldehydes and carbonyl compounds. Tetrahedron, 62, 10079–10086. DOI: 10.1016/j.tet.2006.08.063.

    Article  CAS  Google Scholar 

  • Yang, J. W., Stadler, M., & List, B. (2007). Proline-catalyzed Mannich reaction of aldehydes with N-Boc-imines. Angewandte Chemie International Edition, 46, 609–611. DOI: 10.1002/anie.200603188.

    Article  CAS  Google Scholar 

  • Yi, W. B., & Cai, C. (2006). Mannich-type reactions of aromatic aldehydes, anilines and methyl ketones in fluorous biphase systems created by rare earth(III) perfluorooctane sulfonates catalysts in fluorous media. Journal of Fluorine Chemistry, 127, 1515–1521. DOI: 10.1016/j.jfluchem.2006.07.009.

    Article  CAS  Google Scholar 

  • Yin, D. H., Li, C. Y., Tao, L., Yu, N. G., Hu, S., & Yin, D. L. (2006). Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids. Journal of Molecular Catalysis A, 245, 260–265. DOI: 10.1016/j.molcata.2005.10.010.

    Article  CAS  Google Scholar 

  • Yue, C. B., Yi, T. F., Zhu, C. B., & Liu, G. (2009). Mannich reaction catalyzed by a novel catalyst under solvent-free conditions. Journal of Industrial and Engineering Chemistry, 15, 653–656. DOI: 10.1016/j.jiec.2009.09.038.

    Article  CAS  Google Scholar 

  • Zhao, G. Z., Jiang, T., Gao, H. X., Han, B. X., Huang, J., & Sun, D. H. (2004). Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chemistry, 6, 75–77. DOI: 10.1039/b309700p.

    Article  CAS  Google Scholar 

  • Zhao, H., Xia, S. Q., & Ma, P. S. (2005). Use of ionic liquids as ‘green’ solvents for extractions. Journal of Chemical Technology & Biotechnology, 80, 1089–1096. DOI: 10.1002/jctb.1333.

    Article  CAS  Google Scholar 

  • Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics and noncovalent interactions. Journal of Chemical Theory and Computation, 2, 364–382. DOI: 10.1021/ct0502763.

    Article  Google Scholar 

  • Zhou, X., Liu, B., Luo, F., Zhang, W., & Song, H. (2011). Novel Brønsted-acidic ionic liquids based on benzothiazolium cations as catalysts for esterification reactions. Journal of the Serbian Chemical Society, 76, 1607–1615. DOI: 10.2298/jsc110102144z.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Petrović.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, V.P., Simijonović, D., Petrović, Z.D. et al. Formation of a vanillic Mannich base — theoretical study. Chem. Pap. 69, 1244–1252 (2015). https://doi.org/10.1515/chempap-2015-0123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0123

Keywords

Navigation