Advertisement

Chemical Papers

, Volume 69, Issue 9, pp 1193–1201 | Cite as

Bioleaching of hazardous waste

  • Klára DrobíkováEmail author
  • Lucia Rozumová
  • Hana Otoupalíková
  • Jana Seidlerová
Original Paper

Abstract

Landfill represents the least environmentally-friendly method of waste disposal because of possible pollution to the environment. Dangerous wastes pose the greatest problems and are often disposed of by combustion. This process reduces their volume but entails the formation of new types of dangerous waste. The present study focuses on the possibilities of the removal of the hazardous properties of waste originating from hazardous waste incinerators (three types of bottom ash and charcoal from flue gas cleaning) by bioleaching. Toxic pollutants originating from waste could be removed by bioleaching with Acidithiobacillus ferrooxidans. The effectiveness of bioleaching was evaluated on the basis of the pollutant content in the aqueous leachates. For studying the relation between the efficiency of bioleaching and the binding of pollutants in the waste, Tessier’s sequential extraction was used. A comparison of bioleaching efficiency and the results of sequential extraction shows that bioleaching can be used to remove elements which are in an exchangeable form or are bound to carbonates, meaning that they are bound in bio-available forms. Bacterial activity was also shown to change the bonds of pollutants in wastes, leading to increased solubility of the pollutant.

Keywords

environment dangerous waste thermal treatment bioleaching sequential extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andráš, P., Adam, M., Chovan, M., & Šlesárová, A., (2008). Environmental hazardous of the bioleaching of ore minerals from waste at the Pezinok deposit. Carpathian Journal of Earth and Environmental Sciences, 3, 7–22.Google Scholar
  2. Bartoňová, L., Klika, Z., Seidlerová, J., & Danihelka, P. (2001). Sborník védeckých prací Vysoké školy báňské — Technické univerzity Ostrava/Transactions of the VŠB — Technical University of Ostrava (1st ed.). Ostrava, Czech Republic: VŠB Technical university of Ostrava. (in Czech)Google Scholar
  3. Batchelor, B. (2006). Overview of waste stabilization with cements. Waste Management, 26, 689–698. DOI:  10.1016/j.wasman.2006.01.020.CrossRefGoogle Scholar
  4. Batley, G. E. (1989). Trace element speciation: Analytical methods and problems. Boca Raton, FL, USA: CRC Press.Google Scholar
  5. Bayat, B., & Sari, B. (2010a). Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Journal of Hazardous Materials, 174, 763–769. DOI:  10.1016/j.jhazmat.2009.09.117.CrossRefGoogle Scholar
  6. Bayat, B., & Sari, B. (2010b). Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor. African Journal of Biotechnology, 9, 7504–7512. DOI:  10.5897/ajb10.1142.Google Scholar
  7. Belevi, H., Stämpfli, D. M., & Baccini, P. (1992). Chemical behaviour of municipal solid waste incinerator bottom ash in monofills. Waste Management Research, 10, 153–167. DOI:  10.1016/0734-242x(92)90069-w.CrossRefGoogle Scholar
  8. Borovec, Z. (2000). Speciace prvků v kontaminovaných půdách, kalech, říčních a jezerních sedimentech. Vodní Hospodářství, 1, 1–5. (in Czech)Google Scholar
  9. Buchholz, B. A., & Landsberger, S. (1995). Leaching dymanic studies of multicipal solid waste incinerator ash. Journal of the Air & Waste Management Association, 45, 579–590. DOI:  10.1080/10473289.1995.10467388.CrossRefGoogle Scholar
  10. Campanella, L., D’Orazio, D., Petronio, B. M., & Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta, 309, 387–393. DOI:  10.1016/0003-2670(95)00025-u.CrossRefGoogle Scholar
  11. Calvet, R., Bourgeois, S., & Msaky, J. J. (1990). Some experiments on extraction of heavy metals present in soil. International Journal of Environmental Analytical Chemistry, 39, 31–45. DOI:  10.1080/03067319008027680.CrossRefGoogle Scholar
  12. Cauwenberg, P., & Maes, A. (1997). Influence of oxidation on sequential chemical extraction of dredged river sludge. International Journal of Environmental Analytical Chemistry, 68, 47–57. DOI:  10.1080/03067319708030479.CrossRefGoogle Scholar
  13. Choi, M. S., Cho, K. S., Kim, D. S., & Kim, D. J. (2004). Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. Journal of Environmental Science and Health Part A — Toxic/Hazardous Substances & Environmental Engineering, 39, 2973–2982. DOI:  10.1081/lesa-200034763.CrossRefGoogle Scholar
  14. Corkhill, C. L., & Vaughen, D. J. (2009). Arsenopyrite oxidation-A review. Applied Geochemistry, 24, 2342–2361. DOI:  10.1016/j.apgeochem.2009.09.008.CrossRefGoogle Scholar
  15. Czech Office for Standards, Metrology and Testing (2003). Česká technická norma: Charakterizace odpadů-Vyluhování-Ovéřovací zkouška vyluhovatelnosti. CSN EN 12457-4. Prague, Czech Republic. (in Czech).Google Scholar
  16. Derie, R., 1996. A new way to stabilize fly ash from municipal incineration. Waste Management, 8, 711–716. DOI:  10.1016/s0956-053x(97)00013-5.CrossRefGoogle Scholar
  17. Dopson, M., Lövgren, L., & Boström, D. (2009). Silicate mineral dissolution in the presence of acidophilic microorganisms: Implications for heap bioleaching. Hydrometallurgy, 96, 288–293. DOI:  10.1016/j.hydromet.2008.11.004.CrossRefGoogle Scholar
  18. Drobíková, K. (2010). Spalování odpadů ze zdravotnických zařízení. Master thesis. VŠB-Technical University of Ostrava, Ostrava, Czech Republic. (in Czech)Google Scholar
  19. Drogui, P., Picher, S., Mercier, G., & Blais, J. F. (2003). Bioleaching kinetic of a pyrite mining residue using organic waste as culture media of Acidithiobacillus ferrooxidans. Environmental Technology, 24, 1413–1423. DOI:  10.1080/09593330309385685.CrossRefGoogle Scholar
  20. Escobar, B., Buccicardi, S., Morales, G., & Wiertz, J. (2009). Bacterial oxidation of ferrous iron and risks at low temperatures: their effect on acid mine drainage and bioleaching of sulphide minerals. Advanced Materials Research, 71–73, 433–436. DOI:  10.4028/www.scientific.net/AMR.71-73.433.CrossRefGoogle Scholar
  21. European Committee for Standardization (2002). European Standard: Characterisation of waste — Leaching — Compliance test for leaching of granular waste materials and sludges. EN 12457–4. Brussels, Belgium.Google Scholar
  22. Fečko, P., Kušnierová, M., Čablík, V., & Pečtová, I. (2004). Environmentální biotechnologie. Ostrava, Czech Republic: VŠB-Technical University of Ostrava. (in Czech)Google Scholar
  23. Fečko, P., Janáková, I., Pertile, E., & Kulová, E. (2011). Bacterial leaching of Pb metallurgical waste. Metalurgija, 50, 33–36.Google Scholar
  24. Fuoco, R., Ceccarini, A., Tassone, P., Wei, Y., Brongo, A., & Francesconi, S. (2005). Innovative stabilization/solidification processes of fly ash from an incinerator plant of urban solid waste. Microchemical Journal, 79, 29–35. DOI:  10.1016/j.microc.2004.10.011.CrossRefGoogle Scholar
  25. Hall, G. E. M., Gauthier, G., Pelchat, J. C., Pelchat, P., & Vaive, J. E. (1996). Application of a sequential extraction scheme to 10 geological certified reference materials for the determination of 20 elements. Journal of Analytical Atomic Spectrometry, 11, 787–796. DOI:  10.1039/ja9961100787.CrossRefGoogle Scholar
  26. Ivanus, R. C. (2010). Bioleaching ofmetals from electronic scrap by pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Metallurgia International, 15, 62–70.Google Scholar
  27. Jekić, J. S., Beškoski, V. P., Gojgić-Cvijović, G., Grbavčić, M., &Vrvić, M. M. (2007). Bacterially generated Fe2(SO4)3 from pyrite, as a leaching agent for heavy metals from lignite ash. Journal of the Serbian Chemical Society, 72, 615–619. DOI:  10.2298/jsc0706615j.CrossRefGoogle Scholar
  28. Kavouras, P., Kaimakamis, G., Ioannidis, T. A., Kehagias, T., Komninou, P., Kokkou, S., Pavlidou, E., Antonopoulos, I., Sofoniou, M., Zouboulis, A., Hadjiantoniou, C. P., Nouet, G., Prakouras, A., & Karakostas, T. (2003). Vitrification of lead-rich solid ashes from incineration of hazardous industrial wastes. Waste Managemant, 23, 361–371. DOI:  10.1016/s0956-053x(02)00153-8.CrossRefGoogle Scholar
  29. Kirby, C. S., & Rimstidt, J. D. (1993). Mineralogy and surface properties of municipal solid waste ash. Environmental Science & Technology, 27, 652–660. DOI:  10.1021/es00041a008.CrossRefGoogle Scholar
  30. Kratošová, G., Schröfel, A., Seidlerová, J., & Krištofová, D. (2012). Adaptation of Acidithiobacillus bacteria to metallurgical wastes and its potential environmental risks. Waste Management & Research, 30, 1–7. DOI:  10.1177/0734242x11420327.Google Scholar
  31. Kulveitová, H., Karčmarčíková, S., & Leško, J. (1997). Chemical speciation of Zn and Pb in solid metallurgical emissions. Chemické Listy, 91, 715–716. (in Czech)Google Scholar
  32. Kulveitová, H. (1999). Chemická speciace zinku, kadmia a olova a jejich vyluhování z tuhých metalurgických emisí. Habilitation, Ostrava, Czech Republic, VŠB-Technical University of Ostrava. (in Czech)Google Scholar
  33. Kulveitová, H., Seidlerová, J., & Leško, J. (2000). Vztah mezi chemickou speciací Zn(II) a jeho kyselým loužením z jemných metalurgických odpadů. Acta Metallurgica Slovaca, 6, 310–317. (in Czech)Google Scholar
  34. Malviya, R., & Chaudhary, R. (2006). Factors affecting hazardous waste solidification/stabilization: A review. Journal of Hazardous Materials, 137, 267–276. DOI:  10.1016/j.jhazmat.2006.01.065.CrossRefGoogle Scholar
  35. Mishra, D., Kim, D. J., Ralph, D. E., Ahn, G. J., & Rhee, Y. H. (2006) Bioleaching of valuable metals from waste cathode materials of the lithium ion battery industry using Acidithiobacillus ferrooxidans. In Proceedings of the 3rd International Conference on the Sustainable Processing of Minerals, June 5–6, 2006 (pp. 49–54). Melbourne, Australia: The Australasian Institute of Mining and Metallurgy.Google Scholar
  36. Narayan, S. J., & Sahana, S. (2009). Bioleaching: A review. Research Journal of Biotechnology, 4, 72–75.Google Scholar
  37. Olson, G. J., Brierley, J. A., & Brierley, C. L. (2003). Bioleaching review part B. Applied Microbiology and Biotechnology, 63, 249–257. DOI:  10.1007/s00253-003-1404-6.CrossRefGoogle Scholar
  38. Piantone, P., Bodenan, F., Derie, R., & Depelsenaire, G. (2003). Monitoring the stabilization of municipal solid waste incineration fly ash by phosphation: mineralogical and balance approach. Waste Management, 23, 225–243. DOI:  10.1016/s0956-053x(01)00058-7.CrossRefGoogle Scholar
  39. Polyák, K., Bodog, I., & Hlavay, J. (1995). Speciation of metalions in solid samples. 2. Investigation on fly ashes. Magyar Kémiai Folyóirat, 101, 24–30.Google Scholar
  40. Pradhan, D., Mishra, D., Kim, D. J., Ahn, J. G., Chaudhury, G. R., & Lee, S. W. (2010). Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. Journal of Hazardous Materials, 175, 267–273. DOI:  10.1016/j.jhazmat.2009.09.159.CrossRefGoogle Scholar
  41. Querol, X., Juan, R., Lopez-Soler, A., Fernandez-Turiel, J., & Ruiz, C. R. (1996). Mobility of trace elements from coal and combustion wastes. Fuel, 75, 821–838. DOI:  10.1016/0016-2361(96)00027-0.CrossRefGoogle Scholar
  42. Raclavská, H., Matýsek, D., & Zamarský, V. (1995). Nové trendy v úpravnictví (1st ed.). Ostrava, Czech Republic: VŠB Technical University of Ostrava. (in Czech)Google Scholar
  43. Rohwerder, T., Gehrke, T., Kinzler, K., & Sand, W. (2003). Bioleaching review part A. Applied Microbiology and Biotechnology, 63, 239–248. DOI:  10.1007/s00253-003-1448-7.CrossRefGoogle Scholar
  44. Rozumová, L. (2010). Termické zpracování odpadů ve spalovně Fecupral, s.r.o. Master thesis, VŠB-Technical University of Ostrava, Ostrava, Czech Republic. (in Czech)Google Scholar
  45. Shuman, L. M., & Hargrove, W. L. (1985). Effect of tillage on the distribution of manganese, copper, iron, and zinc in soil fractions. Soil Scientific Society of America Journal, 49, 1117–1121. DOI:  10.2136/sssaj1985.03615995004900050009x.CrossRefGoogle Scholar
  46. Spear, T. M., Svee, W., Vincent, J. H., & Stanisch, N. (1998). Chemical speciation of lead dust associated with primary lead smelting. Environmental Health Perspectives, 106, 565–571.CrossRefGoogle Scholar
  47. Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in Solid Phases. Soil Scientific Society of America Journal, 46, 260–264. DOI:  10.2136/sssaj1982.03615995004600020009x.CrossRefGoogle Scholar
  48. Štěrbová, G., Krištofová, D., & Seidlerová, J. (2004). Contribution to the recycling of metallurgical waste by bacteria. In Proceeding of the 6th International Conference Metallurgy, Refractories and Environment, May 25–27, 2004 (pp. 215–220) Stará Lesná, Slovakia: Technical University of Košice and Slovak Metallurgical Society.Google Scholar
  49. Száková, J., Tlustoš, P., Pavlíková, D., & Balík, J. (1997). Použitelnost různých extrakčních činidel pro stanovení podílu půdního arsenu využitelného rostlinami. Chemické Listy, 91, 580–584. (in Czech)Google Scholar
  50. Tan, L. C., Choa, V., & Tay, J. H. (1997). The influence of pH on mobility of heavy metals from municipal solid waste incinerator fly ash. Environmental Monitoring and Assessment, 44, 275–284.CrossRefGoogle Scholar
  51. Tessier, A., Cambell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851. DOI:  10.1021/ac50043a017.CrossRefGoogle Scholar
  52. Tessier, A., & Turner, D. (1995). Metal speciation and bioavailability in aquatic systems. Chichester, UK: Wiley.Google Scholar
  53. Theis, T. L., & Padgett, L. E. (1983). Factors affecting the release of trace metals from municipal sludge ashes. Journal of Water Pollution Control Federation, 55, 1271–1279.Google Scholar
  54. Tossavainen, M., & Forssberg, E. (2000). Leaching behaviour of rock material and slag used in road construction-amineralogical interpretation. Steel Research, 71, 442–448.CrossRefGoogle Scholar
  55. Trois, C., Marcello, A., Pretti, S., Trois, P., & Rossi, G. (2007). The environmental risk posed by small dumps of complex arsenic, antimony, nickel and cobalt sulphides. Journal of Geochemical Exploration, 92, 83–95. DOI:  10.1016/j.gexplo.2006.05.003.CrossRefGoogle Scholar
  56. Venditti, D., Durécu, J., & Berthelin, J. (2000). Multidisciplinary approach to assess history, environmental risks, and remediation feasability of soils contaminated by metallurgical activities. Part A: Chemical and physical properties of metals and leaching ability. Archives of Environmental Contamination and Toxicology, 38, 411–420. DOI:  10.1007/s002449910055.CrossRefGoogle Scholar
  57. Visvanathan, C. (1996). Hazardous waste disposal. Resources, Conservation and Recycling, 16, 201–212. DOI:  10.1016/0921-3449(95)00057-7.CrossRefGoogle Scholar
  58. Yang, T., Xu, Z., Wen, J. K., & Yang, L. M. (2009). Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometalurgy, 97, 29–32. DOI:  10.1016/j.hydromet.2008.12.011.CrossRefGoogle Scholar
  59. Zeihen, H., & Brümmer, G. W. (1989). Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59, 505–510. (in German)Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Klára Drobíková
    • 1
    Email author
  • Lucia Rozumová
    • 1
  • Hana Otoupalíková
    • 1
  • Jana Seidlerová
    • 1
  1. 1.Nanotechnology centreVSB-Technical University of OstravaOstrava-Poruba, OstravaCzech Republic

Personalised recommendations