Chemical Papers

, Volume 69, Issue 9, pp 1141–1155 | Cite as

Selective catalytic oxidation of ammonia into nitrogen and water vapour over transition metals modified Al2O3, TiO2 and ZrO2

  • Magdalena JabłońskaEmail author
Original Paper


Copper or iron supported on commercially available oxides, such as γ-Al2O3, TiO2 (anatase) and monoclinic tetragonal ZrO2 (mt-ZrO2) were tested as catalysts for selective catalytic oxidation of ammonia into nitrogen and water vapour (NH3-SCO) in the low temperature range. Different commercial oxides were used in this study to determine the influence of the specific surface area, acidic nature of the support and crystalline phases as well as of the type of species and aggregation state of transition metals on the catalytic performance in selective ammonia oxidation. Copper modified oxide supports were found to be more active and selective to nitrogen than catalysts impregnated with iron. Activities of both transition metal modified samples decreased in the following order: mt-ZrO2, TiO2 (anatase), γ-Al2O3. Quantitative total ammonia conversion was achieved with the Cu/ZrO2 catalytic system at 400°C. Characterisation techniques, e.g. H2-temperature programmed reduction, UV-VIS-diffuse reflectance spectroscopy, suggest that easily reducible copper oxide species are important in achieving high catalytic performances at low temperatures.


oxide supports selective oxidation of ammonia NH3-SCO copper iron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akah, A., Cundy, C., & Garforth, A. (2005). The selective catalytic oxidation of NH3 over Fe-ZSM-5. Applied Catalysis B, 59, 221–226. DOI:  10.1016/j.apcatb.2004.10.020.CrossRefGoogle Scholar
  2. Amblard, M., Burch, R., & Southward, B. W. L. (1999). The selective conversion of ammonia to nitrogen on metal oxide catalysts under strongly oxidising conditions. Applied Catalysis B, 22, L159–L166. DOI:  10.1016/s0926-3373(99)00048-x.CrossRefGoogle Scholar
  3. Basu, B., Vleugels, J., & Van Der Biest, O. (2004). Transformation behaviour of tetragonal zirconia: Role of dopant content and distribution. Materials Science and Engineering A, 366, 338–347. DOI:  10.1016/j.msea.2003.08.063.CrossRefGoogle Scholar
  4. Chang, S. M., & Doong, R. A. (2005). Chemical-composition-dependent metastability of tetragonal ZrO2 in sol-gel-derived films under different calcination conditions. Chemistry of Materials, 17, 4837–4844. DOI:  10.1021/cm051264t.CrossRefGoogle Scholar
  5. Chary, K. V. R., Sagar, G. V., Srikanth, C. S., & Rao, V. V. (2007). Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia. The Journal of Physical Chemistry B, 111, 543–550. DOI:  10.1021/jp063335x.CrossRefGoogle Scholar
  6. Chary, K. V. R., Seela, K. K., Naresh, D., & Ramakanth, P. (2008). Characterization and reductive amination of cyclohexanol and cyclohexanone over Cu/ZrO2 catalysts. Catalysis Communications, 9, 75–81. DOI:  10.1016/j.catcom.2007.05.016.CrossRefGoogle Scholar
  7. Chen, W. M., Ma, Y. P., Qu, Z., Liu, Q. H., Huang, W. J., Hu, X. F., & Yan, N. Q. (2014). Mechanism of the selective catalytic oxidation of slip ammonia over Ru-modified Ce—Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy. Environmental Science & Technology, 48, 12199–12205. DOI:  10.1021/es502369f.CrossRefGoogle Scholar
  8. Chou, T. C., & Nieh, T. G. (1991). Nucleation and concurrent anomalous grain growth of α-Al2O3 during γα phase transformation. Journal of the American Ceramic Society, 74, 2270–2279. DOI:  10.1111/j.1151-2916.1991.tb08295.x.CrossRefGoogle Scholar
  9. Curtin, T., O’Regan, F., Deconinck, C., Knüttle, N., & Hodnett, B. K. (2000). The catalytic oxidation of ammonia: Influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts. Catalysis Today, 55, 189–195. DOI:  10.1016/s0920-5861(99)00238-2.CrossRefGoogle Scholar
  10. de Morais Batista, A. H., Ramos, F. S. O., Braga, T. P., Lima, C. L., de Sousa, F. F., Barros, E. B. D., Filho, J. M., de Oliveira, A. S., de Sousa, J. R., Valentini, A., & Oliveira, A. C. (2010). Mesoporous MAl2O4 (M = Cu, Ni, Fe or Mg) spinels: Characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2. Applied Catalysis A, 382, 148–157. DOI:  10.1016/j.apcata.2010.04.027.CrossRefGoogle Scholar
  11. Dewan, M. A. R., Zhang, G. Q., & Ostrovski, O. (2009). Carbothermal reduction of titania in different gas atmospheres. Metallurgical and Materials Transactions B, 40, 62–69. DOI:  10.1007/s11663-008-9205-z.CrossRefGoogle Scholar
  12. Dossi, C., Fusi, A., Recchia, S., Psaro, R., & Moretti, G. (1999). Cu—ZSM-5 (Si/Al = 66), Cu—Fe—S-1 (Si/Fe = 66) and Cu—S-1 catalysts for NO decomposition: Preparation, analytical characterization and catalytic activity. Microporous and Mesoporous Materials, 30, 165–175. DOI:  10.1016/s1387-1811(99)00020-7.CrossRefGoogle Scholar
  13. Dow, W. P, Wang, Y. P., & Huang, T. J. (2000). TPR and XRD studies of yttria-doped ceria-alumina-supported copper oxide catalyst. Applied Catalysis A, 190, 25–34. DOI:  10.1016/s0926-860x(99)00286-0.CrossRefGoogle Scholar
  14. Gang, L., van Grondelle, J., Snderson, B. G., & van Santen, R. A. (1999). Selective low temperature NH3 oxidation to N2 on copper-based catalysts. Journal of Catalysis, 186, 100–109. DOI:  10.1006/jcat.1999.2524.CrossRefGoogle Scholar
  15. Gang, L., Anderson, B. G., van Grondelle, J., & van Santen, R. A. (2000). NH3 oxidation to nitrogen and water at low temperatures using supported transition metal catalysts. Catalysis Today, 61, 179–185. DOI:  10.1016/s0920-5861(00)00375-8.CrossRefGoogle Scholar
  16. Gang, L., Anderson, B. G., van Grondelle, J., van Santen, R. A., van Gennip W. J. H., Niemantsverdriet, J. W., Kooyman, P. J., Knoester, A., & Brongersma, H. H. (2002). Alumina-supported Cu—Ag catalysts for ammonia oxidation to nitrogen at low temperature. Journal of Catalysis, 206, 60–70. DOI:  10.1006/jcat.2001.3470.CrossRefGoogle Scholar
  17. Hayashi, H., Chen, L. Z., Tago, T., Kishida, M., & Wakabayashi, K. (2002). Catalytic properties of Fe/SiO2 catalysts prepared using microemulsion for CO hydrogenation. Applied Catalysis A, 231, 81–89. DOI:  10.1016/s0926-860x(01)00948-6.CrossRefGoogle Scholar
  18. He, S. L., Zhang, C. B., Yang, M., Zhang, Y., Xu, W. Q., Cao, N., & He, H. (2007). Selective catalytic oxidation of ammonia from MAP decomposition. Separation and Purification Technology, 58, 173–178. DOI:  10.1016/j.seppur.2007.07.015.CrossRefGoogle Scholar
  19. Iglesia, E., Barton, D. G., Soled, S. L., Miseo, S., Baumgartner, J. E., Gates, W. E., Fuentes, G. A., & Meitzner, G. D. (1996). Selective isomerization of alkanes on supported tungsten oxide acids. Studies in Surface Science and Catalysis, 101, 533–542. DOI:  10.1016/s0167-2991(96)80264-3.CrossRefGoogle Scholar
  20. Il’chenko, N. I. (1976). Catalytic oxidation of ammonia. Russian Chemical Reviews, 45, 1119–1134. DOI:  10.1070/rc1976v045n12abeh002765.CrossRefGoogle Scholar
  21. Ivanova, A. S., Slavinskaya, E. M., Gulyaev, R. V., Zaikovskii, V. I., Stonkus, O. A., Danilova, I. G., Plyasova, L. M., Polukhina, I. A., & Boronin, A. I. (2010). Metal-support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Applied Catalysis B, 97, 57–71. DOI:  10.1016/j.apcatb.2010.03.024.CrossRefGoogle Scholar
  22. Jablońska, M., Chmielarz, L., Węegrzyn, A., Guzik, K., Piwowarska, Z, Witkowski, S., Walton, R. I., Dunne, P. W., & Kovanda, F. (2013a). Thermal transformations of Cu—Mg (Zn)—Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen. Journal of Thermal Analysis and Calorimetry, 114, 731–747. DOI:  10.1007/s10973-012-2935-9.CrossRefGoogle Scholar
  23. Jablońska, M., Chmielarz, L., & Węgrzyn, A. (2013b). Selective catalytic oxidation (SCO) of ammonia into nitrogen and water vapour over hydrotalcite originated mixed metal oxides — a short review. Chemik, 67, 701–710.Google Scholar
  24. Jabłońska, M. (2014). Selective catalytic ammonia oxidation into nitrogen and water vapour. Saarbrücken, Germany: Lambert.Google Scholar
  25. Jabłońska, M., Król, A., Kukulska-Zając, E., Tarach, K., Chmielarz, L., & Góra-Marek, K. (2014). Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen. Journal of Catalysis, 316, 36–46. DOI:  10.1016/j.jcat.2014.04.022.CrossRefGoogle Scholar
  26. Kelly, J. R., & Denry, I. (2008). Stabilized zirconia as a structural ceramic: An overview. Dental Materials, 24, 289–298. DOI:  10.1016/ Scholar
  27. Kušar, H. M. J., Ersson, A. G., Vosecký, M., & Järås, S. G. (2005). Selective catalytic oxidation of NH3 to N2 for catalytic combustion of low heating value gas under lean/rich conditions. Applied Catalysis B, 58, 25–32. DOI:  10.1016/j.apcatb.2004.02.020.CrossRefGoogle Scholar
  28. Larsson, P. O., & Anderson, A. (1998). Complete oxidation of CO, ethanol and ethyl acetate over copper oxide supported on titania and ceria modified titania. Journal of Catalysis, 179, 72–89. DOI:  10.1006/jcat.1998.2198.CrossRefGoogle Scholar
  29. Lenihan, S., & Curtin, T. (2009). The selective oxidation of ammonia using copper-based catalysts: The effects of water. Catalysis Today, 145, 85–89. DOI:  10.1016/j.cattod.2008.06.017.CrossRefGoogle Scholar
  30. Li, Y. J., & Armor, J. N. (1997). Selective NH3 oxidation to N2 in a wet stream. Applied Catalysis B, 13, 131–139. DOI:  10.1016/s0926-3373(96)00098-7.CrossRefGoogle Scholar
  31. Liang, C. X., Li, X. Y., Qu, Z. P., Tade, M., & Liu, S. M. (2012). The role of copper species on Cu-Al2O3 catalysts for NH3-SCO reaction. Applied Surface Science, 258, 3738–3743. DOI:  10.1016/j.apsusc.2011.12.017.CrossRefGoogle Scholar
  32. Liu, F. D., He, H., Zhang, C. B., Feng, Z. C., Zheng, L. R., Xie, Y. N., & Hu, T. D. (2010). Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization. Applied Catalysis B, 96, 408–420. DOI:  10.1016/j.apcatb.2010.02.038.CrossRefGoogle Scholar
  33. Long, R. Q., & Yang, R. T. (2002). Selective catalytic oxidation of ammonia to nitrogen over Fe2O3—TiO2 prepared with a sol-gel method. Journal of Catalysis, 207, 158–165. DOI:  10.1006/jcat.2002.3545.CrossRefGoogle Scholar
  34. Luo, M. F., Fang, P., He, M., & Xie, Y. L. (2005). In situ XRD, Raman and TPR studies of CuO/Al2O3 catalysts for CO oxidation. Journal of Molecular Catalysis A, 239, 243–248. DOI:  10.1016/j.molcata.2005.06.029.CrossRefGoogle Scholar
  35. Matsuda, S., & Kato, A. (1983). Titanium oxide based catalysts — a review. Applied Catalysis, 8, 149–165. DOI:  10.1016/0166-9834(83)80076-1.CrossRefGoogle Scholar
  36. Mendes, F. M. T., & Schmal, M. (1997). The cyclohexanol dehydrogenation on Rh—Cu/Al2O3 catalysts Part 1. Characterization of the catalyst. Applied Catalysis A, 151, 393–408. DOI:  10.1016/s0926-860x(96)00316-x.CrossRefGoogle Scholar
  37. Morterra, C., & Magnacca, G. (1996). A case study: Surface chemistry and surface structure of catalytic aluminates, as studied by vibrational spectroscopy of adsorbed species. Catalysis Today, 27, 497–532. DOI:  10.1016/0920-5861(95)00163-8.CrossRefGoogle Scholar
  38. Morterra, C., Giamello, E., Cerrato, G., Centi, G., & Perathoner, S. (1998). Role of surface hydration state on the nature and reactivity of copper ions in Cu—ZrO2 catalysts: N2O decomposition. Journal of Catalysis, 179, 111–128. DOI:  10.1006/jcat.1998.2207.CrossRefGoogle Scholar
  39. Mozer, T. S., & Passos, F. B. (2011). Selective CO oxidation on Cu promoted Pt/Al2O3 and Pt/Nb2O5 catalysts. International Journal of Hydrogen Energy, 36, 13369–13378. DOI:  10.1016/j.ijhydene.2011.08.011.CrossRefGoogle Scholar
  40. Nakajima, F., & Hamada, I. (1996). The state-of-the-art technology of NOx control. Catalysis Today, 29, 109–115. DOI:  10.1016/0920-5861(95)00288-x.CrossRefGoogle Scholar
  41. Neaţu, Ş., Pârvulescu, V. I., Epure, G., Petrea, N., Şomoghi, V., Ricchiardi, G., Bordiga, S., & Zecchina, A. (2009). M/TiO2/SiO2 (M = Fe, Mn and V) catalysts in photo-decomposition of sulfur mustard. Applied Catalysis B, 91, 546–553. DOI:  10.1016/j.apcatb.2009.06.026.CrossRefGoogle Scholar
  42. Ohishi, Y., Kawabata, T., Shishido, T., Takaki, K., Zhang, Q. H., Wang, Y., Nomura, K., & Takehira, K. (2005). Mg—Fe—Al mixed oxides with mesoporous properties prepared from hydrotalcite as precursors: Catalytic behavior in ethylbenzene dehydrogenation. Applied Catalysis A, 288, 220–231. DOI:  10.1016/j.apcata.2005.04.033.CrossRefGoogle Scholar
  43. Parida, K. M., Sahu, N., Mohapatra, P., & Scurrell, M. S. (2010). Low temperature CO oxidation over gold supported mesoporous Fe—TiO2. Journal of Molecular Catalysis A, 319, 92–97. DOI:  10.1016/j.molcata.2009.12.005.CrossRefGoogle Scholar
  44. Pérez-Ramírez, J., Kumar, M. S., & Brückner, A. (2004). Reduction of N2O with CO over FeMFI zeolites: Influence of the preparation method on the iron species and catalytic behaviour. Journal of Catalysis, 223, 13–27. DOI:  10.1016/j.jcat.2004.01.007.CrossRefGoogle Scholar
  45. Pérez-Ramírez, J., & Kondratenko, E. V. (2007). Mechanism of ammonia oxidation over oxides studied by temporal analysis of products. Journal of Catalysis, 250, 240–246. DOI:  10.1016/j.jcat.2007.06.014.CrossRefGoogle Scholar
  46. Pirngruber, G. D., Roy, P. K., & Prins, R. (2006). On determining the nuclearity of iron sites in Fe—ZSM-5 — a critical evaluation. Physical Chemistry Chemical Physics, 8, 3939–3950. DOI:  10.1039/b606205a.CrossRefGoogle Scholar
  47. Praliaud, H., Mikhailenko, S., Chajar., Z., & Primet, M. (1998). Surface and bulk properties of Cu—ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons. Applied Catalysis B, 6, 359–374. DOI:  10.1016/s0926-3373(97)00093-3.CrossRefGoogle Scholar
  48. Ramis, G., Yi, L., & Busca, G. (1996). Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3.An FT-IR study. Catalysis Today, 28, 373–380. DOI:  10.1016/s0920-5861(96)00050-8.CrossRefGoogle Scholar
  49. Reddy, B. M., Ganesh, I., & Chowdhury, B. (1999). Design of stable and reactive vanadium oxide catalysts supported on binary oxides. Catalysis Today, 49, 115–121. DOI:  10.1016/s0920-5861(98)00415-5.CrossRefGoogle Scholar
  50. Salavati-Niasari, M., Davar, F., & Farhadi, M. (2009). Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol-gel method. Journal of Sol-Gel Science and Technology, 51, 48–52. DOI:  10.1007/s10971-009-1940-3.CrossRefGoogle Scholar
  51. Sato, A. G., Volanti, D. P., de Freitas, I. C., Longo, E., & Bueno, J. M. C. (2012). Site-selective ethanol conversion over supported copper catalysts. Catalysis Communications, 26, 122–126. DOI:  10.1016/j.catcom.2012.05.008.CrossRefGoogle Scholar
  52. Schwidder, M., Kumar, M. S., Klementiev, K., Pohl, M. M., Brückner, A., & Grünert, W. (2005). Selective reduction of NO with Fe—ZSM-5 catalysts of low Fe content: I. Relations between active site structure and catalytic performance. Journal of Catalysis, 231, 314–330. DOI:  10.1016/j.jcat.2005.01.031.CrossRefGoogle Scholar
  53. Smirniotis, P. G., Sreekanth, P. M., Peña, D. A., & Jenkins, R. G. (2006). Manganese oxide catalysts supported on TiO2, Al2O3 and SiO2: A comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 45, 6436–6443. DOI:  10.1021/ie060484t.CrossRefGoogle Scholar
  54. Strohmeier, B. R., Leyden, D. E., Field, R. S., & Hercules, D. M. (1985). Surface spectroscopic characterization of Cu/Al2O3 catalysts. Journal of Catalysis, 94, 514–530. DOI:  10.1016/0021-9517(85)90216-7.CrossRefGoogle Scholar
  55. Timofeeva, M. N., Meľgunov, M. S., Kholdeeva, O. A., Malyshev, M. E., Shmakov, A. N., & Fenelonov, V. B. (2007). Full phenol peroxide oxidation over Fe—MMM-2 catalysts with enhanced hydrothermal stability. Applied Catalysis B, 75, 290–297. DOI:  10.1016/j.apcatb.2007.04.023.CrossRefGoogle Scholar
  56. Trueba, M., & Trasatti, S. P. (2005). γ-Alumina as a support for catalysts: A review of fundamental aspects. European Journal of Inorganic Chemistry, 17, 3393–3403. DOI:  10.1002/ejic.200500348.CrossRefGoogle Scholar
  57. van den Berg, F. G. A., Glezer, J. H. E., & Sachtler, W. M. H. (1985). The role of promoters in CO/H2 reactions: Effects of MnO and MoO2 in silica-supported rhodium catalysts. Journal of Catalysis, 93, 340–352. DOI:  10.1016/0021-9517(85)90181-2.CrossRefGoogle Scholar
  58. Wan, H. Q., Li, D., Dai, Y., Hu, Y. H., Liu, B., & Dong, L. (2010). Catalytic behaviors of CuO supported on Mn2O3 modified γ-Al2O3 for NO reduction by CO. Journal of Molecular Catalysis A, 332, 32–44. DOI:  10.1016/j.molcata.2010.08.016.CrossRefGoogle Scholar
  59. Wu, G. S., Mao, D. S., Lu, G. Z., Cao, Y., & Fan, K. N. (2009). The role of the promoters in Cu based catalysts for methanol steam reforming. Catalysis Letters, 130, 177–184. DOI:  10.1007/s10562-009-9847-8.CrossRefGoogle Scholar
  60. Wu, Q., Ouyang, J. J., Xie, K. P., Sun, L., Wang, M. Y., & Lin, C. J. (2012). Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts. Journal of Hazardous Materials, 199–200, 410–417. DOI:  10.1016/j.jhazmat.2011.11.031.CrossRefGoogle Scholar
  61. Yamaguchi, T. (1994). Application of ZrO2 as a catalyst and catalysts support. Catalysis Today, 20, 199–217. DOI:  10.1016/0920-5861(94)80003-0.CrossRefGoogle Scholar
  62. Zawadzki, J. (1950). The mechanism of ammonia oxidation and certain analogous reactions. Discussions of the Faraday Society, 8, 140–152. DOI:  10.1039/df9500800140.CrossRefGoogle Scholar
  63. Zhang, L., & He, H. (2009). Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3. Journal of Catalysis, 268, 18–25. DOI:  10.1016/j.jcat.2009.08.011.CrossRefGoogle Scholar
  64. Zhang, Z. X., Chen, M. X., & Shangguan, W. F. (2009). Low-temperature SCR of NO with propylene in excess oxygen over the Pt/TiO2 catalyst. Catalysis Communications, 10, 1330–1333. DOI:  10.1016/j.catcom.2009.02.015.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations