Skip to main content
Log in

Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Demand for high-value petroleum products is increasing and crude oils and their distillation products are becoming heavier. The thermal cracking of a vacuum residue (VR) from REB (Russian Export Blend) crude oil was carried out in an autoclave. LCO (light cycle oil), naphtha, and brown coal (BC) were added with the aim of studying their effect on the final products composition. The elemental analysis (%C, %N, %H, %S) was performed and dynamic viscosity, density, GC of gases (“Refinery Gas Analysis”), solubility in hexane and toluene, and simulated distillation were examined in raw materials, gaseous, and liquid products. As anticipated, due to its high aromatics content, the addition of LCO proved the best option, obtaining the highest yield of lighter liquids. The naphtha addition resulted in a slight increment of heavier products in the gaseous phase and higher yields to solids. The literature does not contain any extensive studies of the addition of BC to VR in the hydrovisbreaking process. The addition of BC resulted in an increment in the yield of the gaseous product and assumed the highest relative total consumption of hydrogen during the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmaruzzaman, M., & Sharma, D. K. (2008). Characterization of liquid products obtained from co-cracking of petroleum vacuum residue with coal and biomass. Journal of Analytical and Applied Pyrolysis, 81, 37–44. DOI: 10.1016/j.jaap.2007.08.001.

    Article  CAS  Google Scholar 

  • ASTM International (2010). ASTM standard: Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants. ASTM D5291. West Conshohocken, PA, USA.

    Google Scholar 

  • ASTM International (2012). ASTM standard: Standard test method for ASTM color of petroleum products (ASTM color scale). ASTM D1500. West Conshohocken, PA, USA.

    Google Scholar 

  • Benito, A. M., Martínez, M. T., Fernández, I., & Miranda, J. L. (1995). Visbreaking of an asphaltenic coal residue. Fuel, 74, 922–927. DOI: 10.1016/0016-2361(95)00013-u.

    Article  CAS  Google Scholar 

  • Carrillo, J. A., Pantoja, F., Garzón, G., Barrios, H., Fernández, J., Carmonan, E., & Saavedra, J. (2000). Control of severity in visbreaking. Fuel Preprints, 45–3, 617–622. Washington, DC, USA: ACS Energy and Fuels Division.

    Google Scholar 

  • Carrillo, J. A., & Corredor, L. M. (2013). Upgrading of heavy crude oils: Castilla. Fuel Processing Technology, 109, 156–162. DOI: 10.1016/j.fuproc.2012.09.059.

    Article  CAS  Google Scholar 

  • Castañeda, L. C., Muñoz, J. A. D., & Ancheyta, J. (2011). Comparison of approaches to determine hydrogen consumption during catalytic hydrotreating of oil fractions. Fuel, 90, 3593–3601. DOI: 10.1016/j.fuel.2010.11.047.

    Article  Google Scholar 

  • CEN (2010). European standard: Bitumen and bituminous binders. Determination of dynamic viscosity of bituminous binder using a rotating spindle apparatus. EN 13220:2010. Brussels, Belgium.

    Google Scholar 

  • Choi, B. C., Gross, B., & Malladi, M. (1986). US Patent No. 4615791. Washington, DC, USA: U.S. Patent and Trademark Office.

  • Emam, E. A. (2013). Clays as catalysts in petroleum refining industry. ARPN Journal of Science and Technology, 3, 356–375.

    Google Scholar 

  • Gray, R. M. (1994). Upgrading petroleum residues and heavy oils. New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Hossain, M., Kitaguchi, T., Sato, Y., Tago, T., & Masuda, T. (2010). Heavy oil upgrading in supercritical water using iron based catalyst. In 20th Annual Saudi-Japan Catalysts Symposium on “Catalysts in Petroleum Refining & Petrochemicals”, December 5–6, 2010. Dhahran, Saudi Arabia: King Fahd University of Petroleum & Minerals.

    Google Scholar 

  • ISO (2010). ISO standard: Hard coal and coke: Determination of volatile matter. ISO 562:2010. Geneva, Switzerland.

    Google Scholar 

  • Joshi, J. B., Pandit, A. B., Kataria, K. L., Kulkarni, R. P., Sawarkar, A. N., Tandon, D., Ram, Y., & Kumar, M. M. (2008). Petroleum residue upgradation via visbreaking: A review. Industrial & Engineering Chemistry Research, 47, 8960–8988. DOI: 10.1021/ie0710871.

    Article  CAS  Google Scholar 

  • Liu, Y. D., Gao, L. A., Wen, L. Y., & Zong, B. N. (2009). Recent advances in heavy oil hydroprocessing technologies. Recent Patents on Chemical Engineering, 2, 22–36. DOI: 10.2174/2211334710902010022.

    Article  CAS  Google Scholar 

  • Lee, S. H., Heo, H. S., Jeong, K. E., Yim, J. H., Jeon, J. K., Jung, K. Y., Ko, Y. S., Kim, S. S., & Park, Y. K. (2011). Catalytic pyrolysis of oilsand bitumen over nanoporous catalysts. Journal of Nanoscience and Nanotechnology, 11, 759–762. DOI: 10.1166/jnn.2011.3232.

    Article  CAS  Google Scholar 

  • Mar Juárez, E., Ortega García, F. J., & Schacht Hernández, P. (2014). Hydrocracking of vacuum residue by homogeneous catalysis. Fuel, 135, 51–54. DOI: 10.1016/j.fuel.2014.05.070.

    Article  Google Scholar 

  • Menoufy, M. F., Ahmed, H. S., Betiha, M. A., & Sayed, M. A., (2014). A comparative study on hydrocracking and hydrovis-breaking combination for heavy vacuum residue conversion. Fuel, 119, 106–110. DOI: 10.1016/j.fuel.2013.11.017.

    Article  CAS  Google Scholar 

  • Oelert, H. H., Bloss, R., & Zhang, P. F. (1988). Parameter evaluation for coprocessing of brown coal and vacuum residue from petroleum. In Symposium on Coal-Derived Fuels — Coprocessing, June 5–10, 1988 (pp. 185–192). Toronto, Canada: ACS.

    Google Scholar 

  • Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86, 1216–1231. DOI: 10.1016/j.fuel.2006.08.004.

    Article  CAS  Google Scholar 

  • Shah, A. A. (2011). Experimental optimization of the CAPRI process. Ph.D. Thesis, The University of Birmingham, Birmingham, UK.

    Google Scholar 

  • Speight, J. G. (2012). Visbreaking: A technology of the past and the future. Scientia Iranica, 19, 569–573. DOI: 10.1016/j.scient.2011.12.014.

    Article  CAS  Google Scholar 

  • Stratiev, D., Shishkova, I., Dinkov, R., Nikolova, R., Mitkova, M., Stanulov, K., Sharpe, R., Russell, C. A., Obryvalina, A., & Telyashev, R. (2014). Reactivity and stability of vacuum residual oils in their thermal conversion. Fuel, 123, 133–142. DOI: 10.1016/j.fuel.2014.01.043.

    Article  CAS  Google Scholar 

  • Thomas, M., Fixari, B., Le Perchec, P., Princic, Y., & Lena, L. (1989). Visbreaking of Safaniya vacuum residue in the presence of additives. Fuel, 68, 318–322. DOI: 10.1016/0016-2361(89)90095-1.

    Article  CAS  Google Scholar 

  • Viet, T. T., Lee, J. H., Ma, F. Z., Kim, G. R., Ahn, I. S., & Lee, C. H. (2013). Hydrocracking of petroleum vacuum residue with activated carbon and metal additives in a supercritical m-xylene solvent. Fuel, 103, 553–561. DOI: 10.1016/j.fuel.2012.06.075.

    Article  CAS  Google Scholar 

  • Wieckowska, J., & Kwiatkowska, E. (1992). A study of the mixture of coal and residue of the vacuum distillation of crude oil by thermal analysis. Journal of Thermal Analysis and Calorimetry, 38, 463–474. DOI: 10.1007/bf01915511.

    Article  CAS  Google Scholar 

  • Wieckowska, J. (1993). Effect of petroleum residue addition on the carbonization of non-coking coals. Fuel, 72, 1481–1483. DOI: 10.1016/0016-2361(93)90004-l.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Hidalgo-Herrador.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo-Herrador, J.M., Vráblík, A., Jíša, P. et al. Hydrovisbreaking of vacuum residue from Russian Export Blend: influence of brown coal, light cycle oil, or naphtha addition. Chem. Pap. 69, 1075–1083 (2015). https://doi.org/10.1515/chempap-2015-0119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0119

Keywords

Navigation