Skip to main content
Log in

Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are known. The enzymes are important in the body and alteration of their activity has significant use in the diagnosis of poisoning, liver function, etc. Currently available methods for the determination of cholinesterases have some major drawbacks including various interferences and the inability to be used for decreasing the enzyme activity in the presence of reversible inhibitors due to sample dilution; hence, a method for dilution free assay of cholinesterases is desired. Here, microplates were modified with indoxylacetate (100 µL of 10 mmol L−1 solution) and used for cholinesterases assay after drying at 37°C. The fact that indoxylacetate remains stable in dry state and serves simultaneously as a chromogen and substrate provide good prerequisites for the method. The limit of detection for BChE was 0.71 U while that for AChE was 2.8 U per a 100 µL sample (solution of enzyme or plasma sample). The limit of detection is low enough to allow standard examination of cholinesterasemia. The two cholinesterases can be distinguished from each other using selective inhibitors such as donepezil and iso-OMPA. The new method was also successfully validated for the standard Ellman’s assay using plasma samples with BChE activity adjusted by carbofuran. The new method based on indoxylacetate seems promising for routine tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazire, A., Gillon, E., Lockridge, O., Vallet, V., & Nachon, F. (2011). The kinetic study of the inhibition of human cholinesterases by demeton-S-methyl shows that cholinesterase-based titration methods are not suitable for this organophosphate. Toxicology in Vitro, 25, 754–759. DOI: 10.1016/j.tiv.2011.01.006.

    Article  CAS  Google Scholar 

  • Colović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondzić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11, 315–335. DOI: 10.2174/1570159x11311030006.

    Article  Google Scholar 

  • Darreh-Shori, T., & Soininen, H. (2010). Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Current Alzheimer Research, 7, 67–73. DOI: 10.2174/156720510790274455.

    Article  CAS  Google Scholar 

  • de Melo, J. S., Rondão, R., Burrows, H. D., Melo, M. J., Navaratnam, S., Edge, R., & Voss, G. (2006). Photophysics of an indigo derivative (keto and leuco structures) with singular properties. The Journal of Physical Chemistry A, 110, 13653–13661. DOI: 10.1021/jp057451w.

    Article  Google Scholar 

  • Duysen, E. G., & Lockridge, O. (2011). Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: a model for butyrylcholinesterase-deficient humans. Drug Metabolism & Disposition, 39, 1321–1323. DOI: 10.1124/dmd.111.039917.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. DOI: 10.1016/0006-2952(61)90145-9.

    Article  CAS  Google Scholar 

  • Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V., & Reiner, E. (2003). Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical Biochemistry, 312, 224–227. DOI: 10.1016/s0003-2697(02)00506-7.

    Article  CAS  Google Scholar 

  • George, P. M., & Abernethy, M. H. (1983). Improved Ellman procedure for erythrocyte cholinesterase. Clinical Chemistry, 29, 365–368.

    CAS  Google Scholar 

  • GhattyVenkataKrishna, P. K., Chavali, N., & Uberbacher, E. C. (2013). Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase. Chemical Papers, 67, 677–681. DOI: 10.2478/s11696-013-0354-4.

    Article  CAS  Google Scholar 

  • Giustarini, D., Dalle-Donne, I., Milzani, A., Fanti, P., & Rossi, R. (2013). Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nature Protocols, 8, 1660–1669. DOI: 10.1038/nprot.2013.095.

    Article  CAS  Google Scholar 

  • Gorun, V., Proinov, I., Băltescu, V., Balaban, G., & Bârzu, O. (1978). Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparations. Analytical Biochemistry, 86, 324–326. DOI: 10.1016/0003-2697(78)90350-0.

    Article  CAS  Google Scholar 

  • Guemei, A. A., Cottrell, J., Band, R., Hehman, H., Prudhomme, M., Pavlov, M. V., Grem, J. L., Ismail, A. S., Bowen, D., Taylor, R. E., & Takimoto, C. H. (2001). Human plasma carboxylesterase and butyrylcholinesterase enzyme activity: correlations with SN-38 pharmacokinetics during a prolonged infusion of irinotecan. Cancer Chemotherapy and Pharmacology, 47, 283–290. DOI: 10.1007/s002800000258.

    Article  CAS  Google Scholar 

  • Harel, M., Sussman, J. L., Krejci, E., Bon, S., Chanal, P., Massoulié, J., & Silman, I. (1992). Conversion of acetylcholinesterase to butyrylcholinesterase: Modeling and mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 89, 10827–10831. DOI: 10.1073/pnas.89.22.10827.

    Article  CAS  Google Scholar 

  • Iwasaki, T., Yoneda, M., Nakajima, A., & Terauchi, Y. (2007). Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Internal Medicine, 46, 1633–1639. DOI: 10.2169/internalmedicine.46.0049.

    Article  Google Scholar 

  • Kemkes-Matthes, B., Preissner, K. T., Langenscheidt, F., Matthes, K. J., & Müller-Berghaus, G. (1987). S protein/vitronectin in chronic liver diseases: correlations with serum cholinesterase, coagulation factor X and complement component C3. European Journal of Haematology, 39, 161–165. DOI: 10.1111/j.1600-0609.1987.tb00747.x.

    Article  CAS  Google Scholar 

  • Khaled, E., Hassan, H. N. A., Mohamed, G. G., Ragab, F. A., & Seleim, A. E. A. (2010). Disposable potentiometric sensors for monitoring cholinesterase activity. Talanta, 83, 357–363. DOI: 10.1016/j.talanta.2010.09.020.

    Article  CAS  Google Scholar 

  • Lejus, C., Delaroche, O., Trille, E., Blanloeil, Y., & Pinaud, M. (2006). Butyrylcholinesterase deficiency: how to analyse the cholinesterase activity in small children? Annales Françaises d’Anesthésie et de Réanimation, 25, 657–660. DOI: 10.1016/j.annfar.2006.02.009.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2011). Cholinesterases, a target of pharmacology and toxicology. Biomedical Papers Olomouc, 155, 219–229. DOI: 10.5507/bp.2011.036.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2012a). Acetylcholinesterase inhibitors: a patent review (2008 — present). Expert Opinion on Therapeutic Patents, 22, 871–886. DOI: 10.1517/13543776.2012.701620.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2012b). Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Analytical Letters, 45, 367–374. DOI: 10.1080/00032719.2011.644743.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2013a). Cholinesterases in biorecognition and biosensor construction: A review. Analytical Letters, 46, 1849–1868. DOI: 10.1080/00032719.2013.780240.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2013b). Butyrylcholinesterase as a biochemical marker, a review. Bratislava Medical Journal, 114, 726–734. DOI: 10.4149/bll_2013_153.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2014). Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta, 119, 412–416. DOI: 10.1016/j.talanta.2013.11.045.

    Article  CAS  Google Scholar 

  • Pohanka, M. (2015). Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, 69, 4–16. DOI: 10.2478/s11696-014-0542-x.

    CAS  Google Scholar 

  • Prellwitz, W., Kapp, S., & Müller, D. (1976). Comparative methods for the determination of the activity of serumcholinesterases (acylcholin-acyl-hydrolase E.C. 3.1.1.8) and their diagnostical value. Journal of Clinical Chemistry and Clinical Biochemistry, 14, 93–97. DOI: 10.1515/cclm.1976.14.1-12.93.

    CAS  Google Scholar 

  • Prokofieva, D. S., Jenkins, R. O., & Goncharov, N. V. (2012). Microplate biochemical determination of Russian VX: Influence of admixtures and avoidance of false negative results. Analytical Biochemistry, 424, 108–113. DOI: 10.1016/j.ab.2012.02.022.

    Article  CAS  Google Scholar 

  • Rastogi, S. K., Singh, V. K., Kesavachandran, C., Jyoti, Siddiqui, M. K. J., Mathur, N., & Bharti, R. S. (2008). Monitoring of plasma butyrylcholinesterase activity and hematological parameters in pesticide sprayers. Indian Journal of Occupational & Environmental Medicine, 12, 29–32. DOI: 10.4103/0019-5278.40813.

    Article  CAS  Google Scholar 

  • Sochocka, M., Zaczyńska, E., Leszek, J., Siemieniec, W., & Blach-Olszewska, Z. (2008). Effect of donepezil on innate antiviral immunity of human leukocytes. Journal of the Neurological Sciences, 273, 75–80. DOI: 10.1016/j.jns.2008.06.021.

    Article  CAS  Google Scholar 

  • Villatte, F., Bachman, T. T., Hussein, A. S., & Schmid, R. D. (2001). Acetylcholinesterase assay for rapid expression screening in liquid and solid media. Bio Techniques, 30, 81–86.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pohanka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohanka, M. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples. Chem. Pap. 69, 1044–1049 (2015). https://doi.org/10.1515/chempap-2015-0117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0117

Keywords

Navigation