Advertisement

Chemical Papers

, Volume 69, Issue 8, pp 1130–1135 | Cite as

Application of polypyrrole nanowires for the development of a tyrosinase biosensor

  • Jolanta Kochana
  • Katarzyna Hnida
  • Grzegorz Sulka
  • Paweł Knihnicki
  • Joanna Kozak
  • Agnieszka Gilowska
Short Communication

Abstract

Polypyrrole nanowires (PPyNWs) were fabricated and examined as a structural component of amperometric biosensor matrix. An enzyme, tyrosinase (TYR), was immobilized onto PPyNWs using glutaraldehyde (GA). Matrix composite morphology was investigated using scanning electron microscopy. Electrochemical behavior of the prepared PPyNWs/GA/TYR biosensor towards catechol was studied and the assessment of its analytical characteristics was carried out taking into account linear range, sensitivity, repeatability, reproducibility and operational stability.

Keywords

polypyrrole nanowires conductive polymers biosensor tyrosinase immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apetrei, C., Rodríguez-Méndez, M. L., & De Saja, J. A. (2011). Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochimica Acta, 56, 8919–8925. DOI:  10.1016/j.electacta.2011.07.127.CrossRefGoogle Scholar
  2. Bai, S. L., Zhang, K. W., Sun, J. H., Zhang, D. F., Luo, R. X., Li, D. Q., & Liu, C. C. (2014). Polythiophene—WO3 hybrid architectures for low-temperature H2S detection. Sensors and Actuators B, 197, 142–148. DOI:  10.1016/j.snb.2014.02.038.CrossRefGoogle Scholar
  3. Cernat, A., Le Goff, A., Holzinger, M., Sandulescu, R., & Cosnier, S. (2014). Micro- to nanostructured poly(pyrrolenitrilotriacetic acid) films via nanosphere templates: Applications to 3D enzyme attachment by affinity interactions. Analytical and Bioanalytical Chemistry, 406, 1141–1147. DOI:  10.1007/s00216-013-7135-3.CrossRefGoogle Scholar
  4. Ćirić-Marjanović, G., Pašti I., Gavrilov, N., Janošević, A., & Mentus, S. (2013). Carbonised polyaniline and polypyrrole: Towards advanced nitrogen-containing carbon materials. Chemical Papers, 67, 781–813. DOI:  10.2478/s11696-013-0312-1.Google Scholar
  5. ElKaoutit, M., Naranjo-Rodriguez, I., Domínguez, M., & Hidalgo-Hidalgo-de-Cisneros, J. L. (2011). Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies. Applied Surface Science, 257, 10926–10935. DOI:  10.1016/j.apsusc.2011.08.00.CrossRefGoogle Scholar
  6. Hnida, K. E., Socha, R. P., & Sulka, G. D. (2013). Polypyrrole-silver composite nanowire arrays by cathodic co-deposition and their electrochemical properties. The Journal of Physical Chemistry C, 117, 19382–19392. DOI:  10.1021/jp4038304.Google Scholar
  7. Hamilton, A., & Breslin, C. B. (2014). The development of a novel urea sensor using polypyrrole. Electrochimica Acta, 145, 19–26. DOI:  10.1016/j.electacta.2014.08.052.CrossRefGoogle Scholar
  8. Han, R. X., Cui, L., Ai, S. Y., Yin, H. S., Liu, X. G., & Qiu, Y. Y. (2012). Amperometric biosensor based on tyrosinase immobilized in hydrotalcite-like compounds film for the determination of polyphenols. Journal of Solid State Electrochemistry, 16, 449–456. DOI:  10.1007/s10008-011-1352-5.CrossRefGoogle Scholar
  9. Kochana, J., Kozak, J., Skrobisz, A., & Woźniakiewicz, M. (2012). Tyrosinase biosensor for benzoic acid inhibition-based determination with the use of a flow-batch monosegmented sequential injection system. Talanta, 96, 147–152. DOI:  10.1016/j.talanta.2011.12.009.CrossRefGoogle Scholar
  10. Krzyczmonik, P., Socha, E., & Skrzypek, S. (2015). Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry, 101, 8–13. DOI:  10.1016/j.bioelechem.2014.06.009.CrossRefGoogle Scholar
  11. Li, X. R., Ren, T. K., Wang, A., & Ji, X. P. (2013). Gold nanoparticles-enhances amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes. Analytical Sciences, 29, 473–477. DOI:  10.2116/analsci.29.473.CrossRefGoogle Scholar
  12. Mai, A. T., Duc, T. P., Thi, X. C., Nguyen, M. H., & Nguyen, H. H. (2014). Highly sensitive DNA sensor based on polypyrrole nanowire. Applied Surface Science, 309, 285–289. DOI:  10.1016/j.apsusc.2014.05.032.CrossRefGoogle Scholar
  13. Medina-Plaza, C., de Saja, J. A., & Rodríguez-Méndez, M. L. (2014). Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosensors and Bioelectronics, 57, 276–283. DOI:  10.1016/j.bios.2014.02.023.CrossRefGoogle Scholar
  14. Mosnáčková, K., Chehimi, M., Fedorko, P., & Omastová, M. (2013). Polyamide grafted with polypyrrole: Formation, properties and stability. Chemical Papers, 67, 979–994. DOI:  10.2478/s11696-012-0305-5.Google Scholar
  15. Nowicka, A. M., Fau, M., Rapecki, T., & Donten, M. (2014). Polypyrrole-Au nanoparticles composite as suitable platform for DNA biosensor with electrochemical impedance spectroscopy detection. Electrochimica Acta, 140, 65–71. DOI:  10.1016/j.electacta.2014.03.187.CrossRefGoogle Scholar
  16. Park, E. S., Jang, D. H., Lee, Y. I., Jung, C. W., Lim, D. W., Kim, B. S., Jeong, Y. K., Myung, N. V., & Choa, Y. H. (2014). Fabrication and sensing property for conducting polymer nanowire-based biosensor for detection of immunoglobulin G. Research on Chemical Intermediates, 40, 2565–2570. DOI:  10.1007/s11164-014-1669-7.CrossRefGoogle Scholar
  17. Srinives, S., Sarkar, T., & Mulchandani, A. (2014). Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sensors and Actuators B, 194, 255–259. DOI:  10.1016/j.snb.2013.12.079.CrossRefGoogle Scholar
  18. Sulka, G. D., Hnida, K., & Brzózka, A. (2013). pH sensors based on polypyrrole nanowire arrays. Electrochimica Acta, 104, 536–541. DOI:  10.1016/j.electacta.2012.12.064.CrossRefGoogle Scholar
  19. Tran, T. L., Chu, T. X., Huynh, D. C., Luu, T. H. T., & Mai, A. T. (2014). Effective immobilization of DNA for development of polypyrrole nanowires based biosensor. Applied Surface Science, 314, 260–265. DOI:  10.1016/j.apsusc.2014.06.068.CrossRefGoogle Scholar
  20. Vicentini, F. C., Janegitz, B. C., Brett, C. M. A., & Fatibello-Filho, O. (2013). Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sensors and Actuators B, 188, 1101–1108. DOI:  10.1016/j.snb.2013.07.109.CrossRefGoogle Scholar
  21. Xu, G. Q., Adeloju, S. B., Wu, Y. C., & Zhang, X. Y. (2012). Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Analytica Chimica Acta, 755, 100–107. DOI:  10.1016/j.aca.2012.09.037.CrossRefGoogle Scholar
  22. Zhang, L., Meng, F. L., Chen, Y., Liu, J. Y., Sun, Y. F., Luo, T., Li, M. Q., & Liu, J. H. (2009). A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sensors and Actuators B, 142, 204–209. DOI:  10.1016/j.snb.2009.07.042.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Jolanta Kochana
    • 1
  • Katarzyna Hnida
    • 2
    • 3
  • Grzegorz Sulka
    • 2
  • Paweł Knihnicki
    • 1
  • Joanna Kozak
    • 1
  • Agnieszka Gilowska
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryJagiellonian UniversityKrakówPoland
  2. 2.Department of Physical Chemistry and Electrochemistry, Faculty of ChemistryJagiellonian UniversityKrakówPoland
  3. 3.Academic Centre for Materials and NanotechnologyAGH University of Science and TechnologyKrakówPoland

Personalised recommendations