Skip to main content
Log in

Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Properties of beta-glucosidase produced by Aspergillus niger URM 6642 recently isolated from the Atlantic rainforest biome and its potential tolerance to saccharification of lignocellulosic biomass products and fermentation inhibitors was evaluated. The fungus was cultivated under solid state culture conditions at 37°C with different agro-industrial wastes. High levels of beta-glucosidase (3778.9 U g−1)from A. niger were obtained with rice meal as substrate under solid state culture conditions after ten days. Optimum pH for this particular beta-glucosidase activity was 4.0 although it was stable in the range of 4.0 to 7.0. The half-life (T½) of beta-glucosidase at 55°C is 3 h. However, at the optimum temperature of the enzyme, 65°C, T½ is 20 min. The enzyme showed tolerance to various compounds such as glucose, xylose, 5-hydroxymethyl furfural, furfural, coumarin, ethanol and acetic acid. Therefore, beta-glucosidase from the novel A. niger species may be of potential use in the saccharification of lignocellulosic biomass, as well as an additional enzyme supplement in cellulase cocktails used to increase the yield of fermentable sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gao, Z. Q., Van Hop, D., Yen, L. T., Ando, K., Hiyamuta, S., & Kondo, R. (2012). The production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express, 2, 49. DOI: 10.1186/2191-0855-2-49.

    Article  Google Scholar 

  • Gao, L., Gao, F., Zhang, D. Y., Zhang, C., Wu, G. H., & Chen, S. L. (2013). Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresource Technology, 147, 658–661. DOI: 10.1016/j.biortech.2013.08.089.

    Article  CAS  Google Scholar 

  • Harnicharnchai, P., Champreda, V., Sornlake, W., & Eurwilaichitr, L. (2009). A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expression and Purification, 67, 61–69. DOI: 10.1016/j.pep.2008.05.022.

    Article  Google Scholar 

  • Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 96, 862–870. DOI: 10.1002/bit.21115.

    Article  Google Scholar 

  • Kaushal, R., Sharma, N., & Tandon, D. (2012). Cellulase and xylanase production by co-culture of Aspergillus niger and Fusarium oxysporum utilizing forest waste. Turkish Journal of Biochemistry, 37, 35–41. DOI: 10.5505/tjb.2012.43434.

    Article  CAS  Google Scholar 

  • Kaur, J., Chadha, B. S., Kumar, B. A., Kaur, G. S., & Saini, H. S. (2007). Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology, 10(2), 4. DOI: 10.2225/vol10-issue2-fulltext-4.

    Article  Google Scholar 

  • Liu, D. Y., Zhang, R. F., Yang, X. M., Zhang, Z. H., Song, S., Miao, S. Z., & Shen, Q. R. (2012). Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microbial Cell Factory, 17, 11–25. DOI: 10.1186/1475-2859-11-25.

    CAS  Google Scholar 

  • Ma, S. J., Leng, B., Xu, X. Q., Zhu, X. Z., Shi, Y., Tao, Y. M., Chen, S. X., Long, M. N., & Chen, Q. X. (2011). Purification and characterization of β-1,4-glucosidase from Aspergillus glaucus. African Journal of Biotechnology, 10, 19607–19614. DOI: 10.5897/ajb11.2144.

    Article  CAS  Google Scholar 

  • Masui, D. C., Zimbardi, A. L. R. L., Souza, F. H. M., Guimarães, L. H. S., Furriel, R. P. M., & Jorge, J. A. (2012). Production of a xylose-stimulated β-glucosidase and a cellulase free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World Journal Microbiology & Biotechnology, 28, 2689–2701. DOI: 10.1007/s11274-012-1079-1.

    Article  CAS  Google Scholar 

  • Michelin, M. (2013). Aplication of lignocelulosic residues in the production of cellulase and hemicellulase from fungi. In T. Mahendra, & M. L. T. M. Polizelli (Eds.), Fungal enzymes (pp. 32–59). Boca Raton, FL, USA: Taylor & Francis.

    Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicilic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI: 10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  • Nascimento, C. V., Souza, F. H. M., Masui, D. C., Leone, F. A., Peralta, R. M., Jorge, J. A., & Furriel, R. P. M. (2010). Purification and biochemical properties of a glucose-stimulated β-d-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. Journal of Microbiology, 48, 53–62. DOI: 10.1007/s12275-009-0159-x.

    Article  CAS  Google Scholar 

  • Ng, S., Li, C. W., Chan, S. P., Chir, J. L., Chen, P. T., Tong, C. C., Yu, S. M., & Ho, T. H. D. (2010). High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology, 101, 1310–1317. DOI: 10.1016/j.biortech.2009.08.049.

    Article  CAS  Google Scholar 

  • Olofsson, K., Bertilsson, M., & Lidén, G. (2008). A short review on SSF — an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 1, 1–14. DOI: 10.1186/1754-6834-1-7.

    Article  Google Scholar 

  • Pei, X. Q., Yi, Z. L., Tang, C. G., & Wu, Z. L. (2011). Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Bioresource Technology, 102, 3337–3342. DOI: 10.1016/j.biortech.2010.11.025.

    Article  CAS  Google Scholar 

  • Philippoussis, A., Zervakis, G., & Diamantopoulou, P. (2001). Bioconversion of agricultural lignocelulosic wastes through the cultivation of the edible mushrooms Agrocibes aegerita, Volvariella volvacea and Pleurotus spp. World Journal Microbiology & Biotechnology, 17, 191–200. DOI: 10.1023/a:1016685530312.

    Article  CAS  Google Scholar 

  • Qi, B., Wang, L. M., & Liu, X. J. (2009). Purification and characterization of β glucosidase from newly isolated Aspergillus sp. MT-0204. African Journal of Biotechnology, 8, 2367–2374.

    CAS  Google Scholar 

  • Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–489. DOI: 10.1126/science.1114736.

    Article  CAS  Google Scholar 

  • Rajoka, M. I., Akhtar, M. W., Hanif, A., & Khalid, A. M. (2006). Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World Journal of Microbiology & Biotechnology, 22, 991–998. DOI: 10.1007/s11274-006-9146-0.

    Article  CAS  Google Scholar 

  • Ribeiro, L. F. C., Ribeiro, L. F., Jorge, J. A., & Polizeli, M. L. T. M. (2014). Screening of filamentous fungi for xylanases and cellulases not inhibited by xylose and glucose. British Biotechnology Journal, 4, 30–39. DOI: 10.9734/bbj/2014/6066.

    Article  CAS  Google Scholar 

  • Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbiology Technology, 46, 541–549. DOI: 10.1016/j.enzmictec.2010.03.010.

    Article  CAS  Google Scholar 

  • Soni, R., Nazir, A., & Chadha, B. S. (2010). Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Industrial Crops and Products, 31, 277–283. DOI: 10.1016/j.indcrop.2009.11.007.

    Article  CAS  Google Scholar 

  • Sonia, K. G., Chadha, E. B. S., Badhan, E. A. K., Saini, H. S., & Bhat, E. M. (2008). Identification of glucose tolerant acid active β-glucosidases from thermophilic and thermotolerant fungi. World Journal Microbiology & Biotechnology, 24, 599–604. DOI: 10.1007/s11274-007-9512-6.

    Article  CAS  Google Scholar 

  • Sørensen, A., Ahring, B. K., Lübeck, M., Ubhayasekera, W., Bruno, K. S., Culley, D. E., & Lübeck, P. S. (2012). Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus. Canadian Journal of Microbiology, 58, 1035–1046. DOI: 10.1139/w2012-076.

    Article  Google Scholar 

  • Souza, F. H. M., Nascimento, C. V., Rosa, J. C., Masui, D. C., Leone, F. A., Jorge, J. A., & Furriel, R. P. M. (2010). Purification and biochemical characterization of a mycelial glucose and xylose stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochemistry, 45, 272–278. DOI: 10.1016/j.procbio.2009.09.018.

    Article  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729. DOI: 10.1093/molbev/mst197.

    Article  CAS  Google Scholar 

  • Tengborg, C., Galbe, M., & Zacchi, G. (2001). Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam pretreated softwood. Biotechnology Progress, 17, 110–117. DOI: 10.1021/bp000145+.

    Article  CAS  Google Scholar 

  • Tu, M. B., Zhang, X., Kurabi, A., Gilkes, N., Mabee, W., & Saddler, J. (2006). Immobilization of β-glucosidase on Eupergit C for lignocelluloses hydrolysis. Biotechnology Letters, 28, 151–156. DOI: 10.1007/s10529-005-5328-3.

    Article  CAS  Google Scholar 

  • Turenne, C. Y., Sanche, S. E., Hoban, D. J., Karlowsky, J. A., & Kabani, A. M. (1999). Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. Journal of Clinical Microbiology, 7, 1846–1851.

    Google Scholar 

  • Vintila, T., Dragomirescu, M., Croitoriu, V., Vintila, C., Barbu, H., & Sand, C. (2010). Saccharification of lignocelluloses — with reference to Miscanthus — using different cellulases. Romanian Biotechnological Letters, 15, 5498–5504.

    CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: a guide to methods and applications (pp. 315–322). New York, NY, USA: Academic Press.

    Google Scholar 

  • Wu, Z., & Lee, Y. Y. (1997). Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnology Letters, 19, 977–979. DOI: 10.1023/a:1018487015129.

    Article  CAS  Google Scholar 

  • Yang, S. Q., Jiang, Z. Q., Yan, Q. J., & Zhu, H. F. (2008). Characterization of a thermostable extracellular β-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. Journal of Agricultural and Food Chemistry, 56, 602–608. DOI: 10.1021/jf072279.

    Article  CAS  Google Scholar 

  • Zanoelo, F. F., Polizeli, M. L. T. M., Terenzi, H. F., & Jorge, J. A. (2004). β-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiology Letters, 240, 137–143. DOI: 10.1016/j.femsle.2004.09.021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina K. Kadowaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oriente, A., Tramontina, R., de Andrades, D. et al. Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chem. Pap. 69, 1050–1057 (2015). https://doi.org/10.1515/chempap-2015-0111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0111

Keywords

Navigation