Skip to main content
Log in

Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Progression of drug resistance among bacterial and fungal pathogens justifies the development of novel antimicrobial agents. Thus, a series of novel sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones have been designed and synthesised. The urea derivatives were obtained by the reaction of sulphamethoxazole and isocyanates, and their cyclisation to imidazolidine-2,4,5-triones was performed via oxalyl chloride. All synthesised derivatives were evaluated in vitro to determine their activity against gram-positive and gram-negative bacteria, fungi, Mycobacterium tuberculosis, and atypical mycobacteria and their cytotoxicity. The growth of mycobacteria was inhibited within the range of 4–1000 µM and M. tuberculosis was the least-susceptible strain. 4-(3-Heptylureido)-N-(5-methylisoxazol-3-yl)benzenesulphonamide was identified as the most promising compound because it exhibited the highest activity against atypical mycobacteria at minimum inhibitory concentrations, from 4 µM, and with acceptable toxicity (selectivity indices for M. avium and M. kansasii higher than 16 and 62.5, respectively). Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, were inhibited at concentrations starting from 125 µM, whereas the investigated derivatives exhibited almost no antifungal potency and activity against gram-negative species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agertt, V. A., Marques, L. L., Bonez, P. C., Dalmolin, T. V., Manzoni de Oliveira, G. N., & Anraku de Campos, M. M. (2013). Evaluation of antimycobacterial activity of a sulphonamide derivative. Tuberculosis, 93, 318–321. DOI: 10.1016/j.tube.2013.02.003.

    Article  CAS  Google Scholar 

  • Akgün, H., Karamelekoğlu, I., Berk, B., Kurnaz, I., Sarıbıyık, G., Öktem, S., & Kocagöz, T. (2012). Synthesis and antimycobacterial activity of some phthalimide derivatives. Bioorganic & Medicinal Chemistry, 20, 4149–4154. DOI: 10.1016/j.bmc.2012.04.060.

    Article  Google Scholar 

  • Alsaad, N., van der Laan, T., van Altena, R., Wilting, K. R., van der Werf, T. S., Stienstra, Y., van Soolingen, D., & Alffenaar, J. W. C. (2013). Trimethoprim/sulfamethoxazole susceptibility of Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 42, 472–474. DOI: 10.1016/j.ijantimicag.2013.07.011.

    Article  CAS  Google Scholar 

  • Ameen, S. M., & Drancourt, M. (2013). In vitro susceptibility of Mycobacterium avium complex mycobacteria to trimethoprim and sulphonamides. International Journal of Antimicrobial Agents, 42, 281–282. DOI: 10.1016/j.ijantimicag.2013.05.006.

    Article  Google Scholar 

  • Brown, J. R., North, E. J., Hurdle, J. G., Morisseau, C., Scarborough, J. S., Sun, D., Korduláková, J., Scherman, M. S., Jones, V., Grzegorzewicz, A., Crew, R. M., Jackson, M., McNeil, M. R., & Lee, R. E. (2011). The structure-activity relationship of urea derivatives as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, 19, 5585–5595. DOI: 10.1016/j.bmc.2011.07.034.

    Article  CAS  Google Scholar 

  • Desai, S. R., Laddi, U., Bennur, R. S., Patil, P. A., & Bennur, S. (2011). Synthesis and pharmacological activities of some new 5-substituted-2-mercapto-1,3,4-oxadiazoles. Indian Journal of Pharmaceutical Sciences, 73, 593–596. DOI: 10.4103/0250-474x.99025.

    Article  Google Scholar 

  • Huang, T. S., Kunin, C. M., Yan, B. S., Chen, Y. S., Lee, S. S. J., & Syu, W. J. (2012). Susceptibility of Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and their combination over a 12 year period in Taiwan. Journal of Antimicrobial Chemotherapy, 67, 633–637. DOI: 10.1093/jac/dkr501.

    Article  CAS  Google Scholar 

  • Krátký, M., & Vinšová, J. (2012). Antifungal activity of salicylanilides and their esters with 4-(trifluoromethyl)benzoic acid. Molecules, 17, 9426–9442. DOI: 10.3390/molecules17089426.

    Article  Google Scholar 

  • Krátký, M., Vinšová, J., Volková, M., Buchta, V., Trejtnar, F., & Stolańíková, J. (2012). Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. European Journal of Medicinal Chemistry, 50, 433–440. DOI: 10.1016/j.ejmech.2012.01.060.

    Article  Google Scholar 

  • Krátký, M., Vinšová, J., Novotná, E., Mandíková, J., Trejtnar, F., & Stolańíková, J. (2013). Antibacterial activity of salicylanilide 4-(trifluoromethyl)benzoates. Molecules, 18, 3674–3688. DOI: 10.3390/molecules18043674.

    Article  Google Scholar 

  • Maresca, A., Scozzafava, A., Vullo, D., & Supuran, C. T. (2013). Dihalogenated sulfanilamides and benzolamides are effective inhibitors of the three β-class carbonic anhydrases from Mycobacterium tuberculosis. Journal of Enzyme Inhibition and Medicinal Chemistry, 28, 384–387. DOI: 10.3109/14756366.2011.645539.

    Article  Google Scholar 

  • Minakuchi, T., Nishimori, I., Vullo, D., Scozzafava, A., & Supuran, C. T. (2009). Molecular cloning, characterization, and inhibition studies of the Rv1284 β-carbonic anhydrase from Mycobacterium tuberculosis with sulfonamides and a sulfamate. Journal of Medicinal Chemistry, 52, 2226–2232. DOI: 10.1021/jm9000488.

    Article  CAS  Google Scholar 

  • North, E. J., Scherman, M. S., Bruhn, D. F., Scarborough, J. S., Maddox, M. M., Jones, V., Grzegorzewicz, A., Yang, L., Hess, T., Morisseau, C., Jackson, M., McNeil, M. R., & Lee, R. E. (2013). Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorganic & Medicinal Chemistry, 21, 2587–2599. DOI: 10.1016/j.bmc.2013.02.028.

    Article  CAS  Google Scholar 

  • Pejchal, V., Stepankova, S., Padelkova, Z., Imramovsky, A., & Jampilek, J. (2011). 1,3-Substituted imidazolidine-2,4,5-triones: Synthesis and inhibition of cholinergic enzymes. Molecules, 16, 7565–7582. DOI: 10.3390/molecules16097565.

    Article  CAS  Google Scholar 

  • Sukdolak, S., Solujić, S., Manojlović, N., & Krstić, L. J. (2005). Synthesis and antimicrobial activity of new N-[4-(4-hydroxy-2-oxo-2H-chromen-3-yl)thiazol-2-yl]benzenesulfonamides. Chemical Papers, 59, 37–40.

    CAS  Google Scholar 

  • Thomas, K. D., Adhikari, A. V., Chowdhury, I. H., Sumesh, E., & Pal, N. K. (2011). New quinolin-4-yl-1,2,3-triazoles carrying amides, sulphonamides and amidopiperazines as potential antitubercular agents. European Journal of Medicinal Chemistry, 46, 2503–2512. DOI: 10.1016/j.ejmech.2011.03.039.

    Article  CAS  Google Scholar 

  • Yun, M. K., Wu, Y., Li, Z., Zhao, Y., Waddell, M. B., Ferreira, A. M., Lee, R. E., Bashford, D., & White, S. W. (2012). Catalysis and sulfa drug resistance in dihydropteroate synthase. Science, 335, 1110–1114. DOI: 10.1126/science.1214641.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Krátký.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krátký, M., Mandíková, J., Trejtnar, F. et al. Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones. Chem. Pap. 69, 1108–1117 (2015). https://doi.org/10.1515/chempap-2015-0109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0109

Keywords

Navigation