Advertisement

Chemical Papers

, Volume 69, Issue 7, pp 950–957 | Cite as

Evaluation of oxidative stability of vegetable oils enriched with herb extracts by EPR spectroscopy

  • Mariola Kozłowska
  • Katarzyna Zawada
Original Paper

Abstract

Vegetable oils are important constituents of a healthy diet. Still, unsaturated fatty acids present in vegetable oils are susceptible to oxidation, which leads to undesirable changes in sensory, chemical and nutritional properties of oils. To prevent this problem, antioxidants are applied with herbs and spices being one of the most important sources of natural antioxidants. Electron paramagnetic resonance spectroscopy (EPR) can be used to detect free radicals, which are the short-lived intermediates of lipid oxidation, and to monitor changes in oxidation susceptibility. In this study, the ESR spin trapping technique was used as a potential method for the evaluation of the resistance to free radical formation in rapeseed and sunflower oils enriched with herb extracts. The antioxidant effect of herb extracts on vegetable oils was also investigated by measuring their ability to scavenge DPPH free radical using EPR spectroscopy. The herb extracts generally improved the radical scavenging properties of sunflower and rapeseed oils but their influence on the onset of rapid lipid oxidation as measured by spin-trapping EPR depended on the type of oil and on the extract concentration.

Keywords

EPR spectroscopy DPPH radical scavenging spin trapping herb extracts oxidative stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babović, N., Žižović, I., Saičić, S., Ivanović, J., & Petrović, S. (2010). Oxidative stabilization of sunflower oil by antioxidant fractions from selected Lamiaceae herbs. Chemical Industry and Chemical Engineering Quarterly, 16 287–293. DOI:  10.2298/ciceq100210030b.CrossRefGoogle Scholar
  2. Bandonienė, D., Venskutonis, P. R., Gruzdienė, D., & Murkovic, M. (2002). Antioxidative activity of sage (Salvia officinalis L.), savory (Satureja hortensis L.) and borage (Borago officinalis L.) extracts in rapeseed oil. European Journal of Lipid Science and Technology, 104 286–292. DOI:  10.1002/1438-9312(200205)104:5<286::aid-ejlt286>3.0.co;2-o.CrossRefGoogle Scholar
  3. Bartee, S. D., Kim, J. H., & Min, D. B. (2007). Effects of antioxidants on the oxidative stability of oils containing arachidonic, docosapentaenoic and docosahexaenoic acids. Journal of the American Oil Chemists’ Society, 84 363–368. DOI:  10.1007/s11746-007-1046-4.CrossRefGoogle Scholar
  4. Capecka, E., Mareczek, A., & Leja, M. (2005). Antioxidant activity of fresh dry herbs of some Lamiaceae species. Food Chemistry, 93 223–226. DOI:  10.1016/j.foodchem.2004.09.020.CrossRefGoogle Scholar
  5. Choe, E., & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5 169–186. DOI:  10.1111/J.1541-4337.2006.00009.x.CrossRefGoogle Scholar
  6. Cosio, M. S., Buratti, S., Mannino, S., & Benedetti, S. (2006). Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiatae family. Food Chemistry, 97 725–731. DOI:  10.1016/j.foodchem.2005.05.043.CrossRefGoogle Scholar
  7. Escudero, R., Valhondo, M., Ordoñez, J. A., de la Hoz, L., Cabeza, M. C., Velasco, R., & Cambero, M. I. (2012). Electron spin resonance (ESR) spectroscopy study of dry-cured ham treated with electron-beam. Food Chemistry, 133 1530–1537. DOI:  10.1016/j.foodchem.2012.02.045.CrossRefGoogle Scholar
  8. Frankel, E. N. (1996). Antioxidants in lipid foods and their impact on food quality. Food Chemistry, 57 51–55. DOI:  10.1016/0308-8146(96)00067-2.CrossRefGoogle Scholar
  9. Gliszczyńska-Świglo, A., Sikorska, E., Khmelinskii, I., & Sikorski, M. (2007). Tocopherol content in edible plant oils. Polish Journal of Food and Nutrition Sciences, 57 157–161.Google Scholar
  10. Hawrysh, Z. J., Shand, P. J., Tokarska, B., & Lin, C. (1989). Effects of tertiary butylhydroquinone on storage stability of canola oil. II. Practical storage. Canadian Institute of Food Science and Technology Journal, 22 40–45. DOI:  10.1016/s0315-5463(89)70299-6.CrossRefGoogle Scholar
  11. International Organization for Standardization (2005). Animal and vegetable fats and oils. Determination of peroxide value. PN-EN ISO 3960:2005. Geneva, Switzerland: International Organization for Standardization.Google Scholar
  12. International Organization for Standardization (2009). Animal and vegetable fats and oils. Determination of acid value and acidity. ISO 660:2009. Geneva, Switzerland: International Organization for Standardization.Google Scholar
  13. Jerzykiewicz, M., Ćwieląg-Piasecka, I., & Jezierski, A. (2013). Pro- and antioxidative effect of α-tocopherol on edible oils, triglycerides and fatty acids. Journal of the American Oil Chemists’ Society, 90 803–811. DOI:  10.1007/s11746-013-2227-y.CrossRefGoogle Scholar
  14. Kozłowska, M., Laudy, A. E., Starościak, B. J., Napiórkowski, A., Chomicz, L., & Kazimierczuk, Z. (2010). Antimicrobial and antiprotozoal effect of sweet marjoram (Origanum majorana L.). Acta Scientiarum Polonorum: Hortorum Cultus, 9 133–141.Google Scholar
  15. Kozłowska, M., Szterk, A., Zawada, K., & Ząbkowski, T. (2012). New opportunities of the application of natural herb and spice extracts in plant oils: Application of electron paramagnetic resonance in examining the oxidative stability. Journal of Food Science, 77, C994–C999. DOI:  10.1111/j.1750-3841.2012.02856.x.CrossRefGoogle Scholar
  16. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013 1–16. DOI:  10.1155/2013/162750.Google Scholar
  17. Luis, J. C., & Johnson, C. B. (2005). Seasonal variations of rosmarinic and carnosoic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Spanish Journal of Agricultural Research, 3 106–112.CrossRefGoogle Scholar
  18. Máriássyová, M. (2006). Antioxidant activity of some herbal extracts in rapeseed and sunflower oils. Journal of Food and Nutrition Research, 45 104–109.Google Scholar
  19. Marinova, E. M., & Yanishlieva, N. V. (1997). Antioxidative activity of extracts from selected species of the family Lamiaceae in sunflower oil. Food Chemistry, 58 245–248. DOI:  10.1016/s0308-8146(96)00223-3.CrossRefGoogle Scholar
  20. Mirzaei, A., Toori, M. A., Mirzaei, N., & Shiraz, R. G. (2013). Antioxidant, antimicrobial and antimutogenic potential of 4 Iranian medicinal plants. Life Science Journal, 10 1085–1091.Google Scholar
  21. Murcia, M. A., Egea, I., Romojaro, F., Parras, P., Jiménez, A. M., & Martínez-Tomé, M. (2004). Antioxidant evaluation in dessert spices compared with common food additives. Influence of irradiation procedure. Journal of Agricultural and Food Chemistry, 52 1872–1881. DOI:  10.1021/jf0303114.CrossRefGoogle Scholar
  22. Naik, A., Meda, V., & Lele, S. S. (2014). Application of EPR spectroscopy and DSC for oxidative stability studies of Nigella sativa and Lepidium sativum seed oil. Journal of the American Oil Chemists’ Society, 91 935–941. DOI:  10.1007/s11746-014-2430-5.CrossRefGoogle Scholar
  23. Papadimitriou, V., Sotiroudis, T. G., Xenakis, A., Sofikiti, N., Stavyiannoudaki, V., & Chaniotakis, N. A. (2006). Oxidative stability and radical scavenging activity of extra virgin olive oils: An electron paramagnetic resonance spectroscopy study. Analytica Chimica Acta, 573–574 453–458. DOI:  10.1016/j.aca.2006.02.007.CrossRefGoogle Scholar
  24. Phapale, R., & Mishra-Thakur, S. (2010). Antioxidant activity and antimutagenic effect of phenolic compounds. in Feronia limonia (L) swingle fruit. International Journal of Pharmacy and Pharmaceutical Sciences, 2 68–73.Google Scholar
  25. Pingret, D., Durand, G., Fabiano-Tixier, A. S., Rockenbauer, A., Ginies, C., & Chemat, F. (2012). Degradation of edible oil during food processing by ultrasound: Electron paramagnetic resonance, physicochemical and sensory appreciation. Journal of Agricultural and Food Chemistry, 60 7761–7768. DOI:  10.1021/jf301286f.CrossRefGoogle Scholar
  26. Pokorný, J., Nguyen, H. T. T., & Korczak, J. (1997). Antioxidant activities of rosemary and sage extracts in sunflower oil. Food/Nahrung, 41 176–177. DOI:  10.1002/food.19970410313.CrossRefGoogle Scholar
  27. Raitio, R., Orlien, V., & Skibsted, L. H. (2011). Electron spin resonance spectroscopy for evaluation of early oxidative events in semisolid palm oil. European Journal of Lipid Science and Technology, 113 208–213. DOI:  10.1002/ejlt.201000087.CrossRefGoogle Scholar
  28. Ramadan, M. F., & Moersel, J. T. (2006). Screening of the antiradical action of vegetable oils. Journal of Food Composition and Analysis, 19 838–842. DOI:  10.1016/j.jfca.2006.02.013.CrossRefGoogle Scholar
  29. Stoll, S., & Schweiger, A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance, 178 42–55. DOI:  10.1016/j.jmr.2005.08.013.CrossRefGoogle Scholar
  30. Szterk, A., Stefaniuk, I., Waszkiewicz-Robak, B., & Roszko, M. (2011). Oxidative stability of lipids by means of EPR spectroscopy and chemiluminescence. Journal of the American Oil Chemists’ Society, 88 611–618. DOI:  10.1007/s11746-010-1715-6.CrossRefGoogle Scholar
  31. Thomsen, M. K., Kristensen, D., & Skibsted, L. H. (2000). Electron spin resonance spectroscopy for determination of the oxidative stability of food lipids. Journal of the American Oil Chemists’ Society, 77 725–730. DOI:  10.1007/s11746-000-0117-2.CrossRefGoogle Scholar
  32. Trojáková, L., Réblová, Z., Nguyen, H. T. T., & Pokorný, J. (2001). Antioxidant activity of rosemary and sage extracts in rapeseed oil. Journal of Food Lipids, 8 1–13. DOI:  10.1111/j.1745-4522.2001.tb00179.x.CrossRefGoogle Scholar
  33. Valavanidis, A., Nisiotou, C., Papageorgiou, Y., Kremli, I., Satravelas, N., Zinieris, N., & Zygalaki, H. (2004). Comparison of the radical scavenging potential of polar and lipidic fractions of olive oil and other vegetable oils under normal conditions and after thermal treatment. Journal of Agricultural and Food Chemistry, 52 2358–2365. DOI:  10.1021/jf030491h.CrossRefGoogle Scholar
  34. Velasco, J., & Dobarganes, C. (2002). Oxidative stability of virgin olive oil. European Journal of Lipid Science and Technology, 104 661–676. DOI:  10.1002/1438-9312(200210)104:9/10<661::aid-ejlt661>3.0.co;2-d.CrossRefGoogle Scholar
  35. Velasco, J., Andersen, M. L., & Skibsted, L. H. (2004). Evaluation of oxidative stability of vegetable oils by monitoring the tendency to radical formation. A comparison of electron spin resonance spectroscopy with the Rancimat method and differential scanning calorimetry. Food Chemistry, 85 623–632. DOI:  10.1016/j.foodchem.2003.07.020.CrossRefGoogle Scholar
  36. Velasco, J., Andersen, M. L., & Skibsted, L. H. (2005). Electron spin resonance spin trapping for analysis of lipid oxidation in oils: Inhibiting effect of the spin trap α-phenyl-N-tert-butylnitrone on lipid oxidation. Journal of Agricultural and Food Chemistry, 53 1328–1336. DOI:  10.1021/jf049051w.CrossRefGoogle Scholar
  37. Yanishlieva, N. V., Marinova, E. M., Gordon, M. H., & Raneva, V. G. (1999). Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 64 59–66. DOI:  10.1016/s0308-8146(98)00086-7.CrossRefGoogle Scholar
  38. Yin, J., Becker, E. M., Andersen, M. L., & Skibsted, L. H. (2012). Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems. Food Chemistry, 135 2195–2202. DOI:  10.1016/j.foodchem.2012.07.025.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Food SciencesWarsaw University of Life Sciences (WULS-SGGW)WarsawPoland
  2. 2.Department of Physical Chemistry, Faculty of PharmacyMedical University of WarsawWarsawPoland

Personalised recommendations