Skip to main content
Log in

Electrode and electrodeless impedance measurement for determination of orange juices parameters

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Electrical impedance spectroscopy (EIS) is a non-destructive, rapid and real-time measurement method which does not require special high-tech measurement devices and can be applied to food quality assessment. This method is rapid, effective and affords low-cost investigation of the product. The conventional EIS method requires a set of metal electrodes in direct contact with the medium to be measured. The complicated electrochemical processes on the electrodes-electrolyte interface could substantially affect the value of the impedance measured. The present study sought to explore the possibilities of using the impedance method for quality control in orange juices, to introduce the electrodeless method of electrolyte impedance measurement and to compare this with the conventional impedance methods. The electrical properties of the orange juices were described with the help of an equivalent circuit. An equivalent circuit was designed with constant phase element approximation. The values of the equivalent circuit components were fitted using a non-standard algorithm inspired by the behaviour of actual ant colonies. Implementing the electrodeless method obviated the electrodes phenomena effects and the behaviour of the electrolyte is similar to inductance. The proposed electrodeless method is generally applicable to measuring the electrochemical properties of electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C n :

capacitors F

CPE:

constant phase element

d:

diameter m

i:

current density A m−2

I:

current A

j:

imaginary unit

l:

length m

L:

induction H

P:

P member of CPE

R:

resistivity Ω

Rn:

resistors Ω

t:

time s

T:

T member of CPE F cm−2sP−1

uL:

voltage V

Z:

impedance Ω

ν:

dimensionless parameter

ρ:

specific resistivity Ω m

ω:

angular frequency s−1

References

  • Ando, Y., Mizutani, K., & Wakatsuki, N. (2014). Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 121 24–31. DOI: 10.1016/j.jfoodeng.2013.08.008.

    Article  Google Scholar 

  • Badhe, S. G., & Helambe, S. N. (2013). Electrical impedance analysis of commonly used preservatives NaCl and C12H22 O11. Science Research Reporter, 3 239–242.

    Google Scholar 

  • Bardos, A., Zare, R. N., & Markides, K. (2005). Inductive behavior of electrolytes in AC conductance measurements. Chemical Physics Letters, 402 274–278. DOI: 10.1016/j.cplett.2004.12.047.

    Article  CAS  Google Scholar 

  • Bertemes-Filho, P., Valicheski, R., Pereira, R. M., & Paterno, A. S. (2010). Bioelectrical impedance analysis for bovine milk: Preliminary results. Journal of Physics: Conference Series, 224, 012133. DOI: 10.1088/1742-6596/224/1/012133.

    Google Scholar 

  • Chen, Y. G., Gu, X., Shen, Y. H., & Xing, S. Z. (2006). Optimization of active power filter system pi parameters based on improved ant colony algorithm, mechatronics and automation. In Proceedings of the 2006 International Conference on Mechatronics and Automation, June 25–28, 2006 (pp. 2189–2193). Henan, Luoyang, China: IEEE. DOI: 10.1109/icma.2006.257633.

    Chapter  Google Scholar 

  • Damez, J. L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2007). Dielectric behavior of beef meat in the 1–1500 kHz range: Simulation with the Fricke/Cole-Cole model. Meat Science, 77 512–519. DOI: 10.1016/j.meatsci.2007.04.028.

    Article  Google Scholar 

  • Daniels, J. S., & Pourmand, N. (2007). Label-free impedance biosensors: Opportunities and challenges. Electroanalysis, 19 1239–1257. DOI: 10.1002/elan.200603855.

    Article  CAS  Google Scholar 

  • Das, S., Sivaramakrishna, M., Biswas, K., & Goswami, B. (2011). Performance study of a “constant phase angle based” impedance sensor to detect milk adulteration. Sensors and Actuators A: Physical, 167 273–278. DOI: 10.1016/j.sna.2011.02.041.

    Article  CAS  Google Scholar 

  • Debnath, L. (2012). Nonlinear partial differential equations for scientists and engineers (pp. 675–687). New York, NY, USA: Springer. DOI: 10.1007/978-0-8176-8265-1.

    Book  Google Scholar 

  • Euring, F., Russ, W., Wilke, W., & Grupa, U. (2011). Development of an impedance measurement system for the detection of decay of apples. Procedia Food Science, 1 1188–1194. DOI: 10.1016/j.profoo.2011.09.177.

    Article  Google Scholar 

  • Fernández-Segovia, I., Fuentes, A., Aliño, M., Masot, R., Alcañiz, M., & Barat, J. M. (2012). Detection of frozen-thawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113 210–216. DOI: 10.1016/j.jfoodeng.2012.06.003.

    Article  Google Scholar 

  • Franco, A. P., Tadini, C. C., & Gut, J. A. W. (2013). Dielectric properties of simulated green coconut water from 500 to 3,000 MHz at temperatures from 10 to 80 C°. In Proceedengs of the 2013 AIChE Annual Meeting Global Challenges for Engineering a Sustainable Future, November 3–8, 2013. San Francisco, CA, USA: AIChE.

    Google Scholar 

  • Guo, W. C., Zhu, X. H., Liu, H., Yue, R., & Wang, S. J. (2010). Effects of milk concentration and freshness on microwave dielectric properties. Journal of Food Engineering, 99 344–350. DOI: 10.1016/j.jfoodeng.2010.03.015.

    Article  Google Scholar 

  • Guo, W. C., Liu, Y., Zhu, X. H., & Wang, S. J. (2011a). Temperature-dependent dielectric properties of honey associated with dielectric heating. Journal of Food Engineering, 102 209–216. DOI: 10.1016/j.jfoodeng.2010.08.016.

    Article  Google Scholar 

  • Guo, W. C., Zhu, X. H., Nelson, S. O., Yue, R., Liu, H., & Liu, Y. (2011b). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT — Food Science and Technology, 44 224–230. DOI: 10.1016/j.lwt.2010.05.032.

    Article  CAS  Google Scholar 

  • Halambre, S. N., & Badhe, S. G. (2013). Characterization of milk using impedance analysis technique. Deccean Current Science International Research Journal, 8 132–136.

    Google Scholar 

  • Jacquelin, J. (1991). A number of models for CPA impedances of conductors and for relaxation in non-Debye dielectrics. Journal of Non-Crystalline Solids, 131–133 1080–1083. DOI: 10.1016/0022-3093(91)90728-o.

    Article  Google Scholar 

  • Jacquelin, J. (1994). Theoretical impedance of rough electrodes with smooth shapes of roughness. Electrochimica Acta, 39 2673–2684. DOI: 10.1016/0013-4686(94)00296-7.

    Article  CAS  Google Scholar 

  • Jean, J. (1997). The phasance concept: A review. Current Topics in Electrochemistry, 4 127–136.

    Google Scholar 

  • Jennings, A. L., Ordonez, R., & Ceccarelli, N. (2008). An Ant Colony Optimization using training data applied to UAV way point path planning in wind. In Proceedings of the IEEE Swarm Intelligence Symposium, September 21–23, 2008. St. Louis, Missouri, USA: IEEE Computational Intelligence Society. DOI: 10.1109/sis.2008.4668302.

    Google Scholar 

  • Kagan, R. L., Schuette, W. H., Zierdt, C. H., & MacLowry, J. D. (1977). Rapid automated diagnosis of bacteremia by impedance detection. Journal of Clinical Microbiology, 5 51–57.

    CAS  Google Scholar 

  • Karásková, P., Fuentes, A., Fernández-Segovia, I., Alcanñiz, M., Masot, R., & Barat, J. M. (2011). Development of a low-cost non-destructive system for measuring moisture and salt content in smoked fish products. Procedia Food Science, 1 1195–1201. DOI: 10.1016/j.profoo.2011.09.178.

    Article  Google Scholar 

  • Katiyar, V. (2013). Food adulteration: The demonic onslaught on health. Saarbrücken, Germany: Lambert Academic Publishing.

    Google Scholar 

  • Kobayashi, A., Mizutani, K., Wakasuki, N., & Maeda, Y. (2013). Changes ofelectrical impedance characteristic of pork in heating process. International Proceedings of Chemical, Biological & Environmental Engineering, 50 74–78. DOI: 10.7763/ipcbee.2013.v50.16.

    Google Scholar 

  • Kuson, P., & Terdwongworakul, A. (2013). Minimally-destructive evaluation of durian maturity based on electrical impedance measurement. Journal of Food Engineering, 116 50–56. DOI: 10.1016/j.jfoodeng.2012.11.021.

    Article  Google Scholar 

  • Li, X. B. (2003). Impedance spectroscopy for manufacturing control material physical properties. Ph.D. thesis, Seattle, WA, USA: University of Washington.

    Google Scholar 

  • Li, X., Toyoda, K., & Ihara, I. (2011). Coagulation process of soymilk characterized by electrical impedance spectroscopy. Journal of Food Engineering, 105 563–568. DOI: 10.1016/j.jfoodeng.2011.03.023.

    Article  CAS  Google Scholar 

  • Macdonald, J. R. (1992). Impedance spectroscopy. Annuals of Biomedical Engineering, 20 289–305. DOI: 10.1007/bf02368532.

    Article  CAS  Google Scholar 

  • Mahapatra, A. K., Jones, B. L., Nguyen, C. N., & Kannan, G. (2010). Experimental determination of the electrical resistivity of beef. Agricultural Engineering International: CIGR Journal, 12 124–128.

    Google Scholar 

  • Maireva, S., Usai, T., & Manhokwe, S. (2013). The determination of adulteration in orange based fruit juices. International Journal of Science and Technology, 2 365–372.

    Google Scholar 

  • McAdams, E. (2006). Bioelectrodes. In J. G. Webster (Ed.), Encyclopedia of medical devices and instrumentation. New York, NY, USA: Wiley. DOI: 10.1002/0471732877.emd013.

    Google Scholar 

  • Mizukami, Y., Yamada, K., Sawai, Y., & Yamaguchi, Y. (2007). Measurement of fresh tea growth using electrical impedance spectroscopy. Agricultural Journal, 2 134–139.

    Google Scholar 

  • Nagy, S., Attaway, J. A., Rhodes, M. E. (1988). Adulteration of fruit juice beverages. New York, NY, USA: CRC Press.

    Google Scholar 

  • Nandakumar, V., La Belle, J. T., Reed, J., Shah, M., Cochran, D., Joshi, L., & Alford, T. L. (2008). A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 24 1039–1042. DOI: 10.1016/j.bios.2008.06.036.

    Article  CAS  Google Scholar 

  • Niu, J., & Lee, J. Y. (2000). A new approach for the determination of fish freshness by electrochemical impedance spectroscopy. Journal of Food Science, 65 780–785. DOI: 10.1111/j.1365-2621.2000.tb13586.x.

    Article  CAS  Google Scholar 

  • Pérez-Esteve, E., Fuentes, A., Grau, R., Fernández-Segovia, I., Masot, R., Alcanñiz, M., & Barat, J. M. (2014). Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata). Food Control, 35 360–365. DOI: 10.1016/j.foodcont.2013.07.025.

    Article  Google Scholar 

  • Ragni, L., Al-Shami, A., Berardinelli, A., Mikhaylenko, G., & Tang, J. (2007). Quality evaluation of shell eggs during storage using a dielectric technique. Transactions of the ASABE, 50 1331–1340. DOI: 10.13031/2013.23610.

    Article  Google Scholar 

  • Rahman, M. S. A., Mukhopadhyay, S. C., Yu, P. L., Goicoechea, J., Matias, I. R., Gooneratne, C. P., & Kosel, J. (2013). Detection of bacterial endotoxin in food: New planar interdigital sensors based approach. Journal of Food Engineering, 114 346–360. DOI: 10.1016/j.jfoodeng.2012.08.026.

    Article  Google Scholar 

  • Rizo, A., Fuentes, A., Fernández-Segovia, I., Masot, R., Alcañiz, M., & Barat, J. M. (2013). Development of a new salmon salting-smoking method and process monitoring by impedance spectroscopy. LWT — Food Science and Technology, 51 218–224. DOI: 10.1016/j.lwt.2012.09.025.

    Article  CAS  Google Scholar 

  • Salamon, M., & Svitok, P. (1959). A low frequency electrodeless conductometer for measuring the electrical conductivity of solutions. Abingdon, UK: Atomic Energy Authority.

    Google Scholar 

  • Scandurra, G., Tripodi, G., & Verzera, A. (2013). Impedance spectroscopy for rapid determination of honey floral origin. Journal of Food Engineering, 119 738–743. DOI: 10.1016/j.jfoodeng.2013.06.042.

    Article  CAS  Google Scholar 

  • Seidlová, R., Poživil, J., & Hanta, V. (2012). Classification rule extracting with ant colony algorithms. In Proceedings of the 39th International Conference of Slovak Society of Chemical Engineering, May 25–29, 2012 (pp. 664–671). Bratislava, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Seidlová, R., Seidl, J., Poživil, J., & Hanta, V. (2013). Application of ant colony algorithm to model electrical impedance spectra of orange juices. In Proceedings of the 40th International Conference of Slovak Society of Chemical Engineering, May 27–31, 2013 (pp. 903–910). Bratislava, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Skierucha, W., Wilczek, A., & Szypłowska, A. (2012). Dielectric spectroscopy in agrophysics. International Agrophysics, 26 187–197. DOI: 10.2478/v10247-012-0027-5.

    Article  Google Scholar 

  • Soltani, M., Alimardani, R., & Omid, M. (2011). Evaluating banana ripening status from measuring dielectric properties. Journal of Food Engineering, 105 625–631. DOI: 10.1016/j.jfoodeng.2011.03.032.

    Article  Google Scholar 

  • Srinivasan, B., Tung, S., Li, Y. B., & Varshney, M. (2006). Simulation of electrical impedance based microfluidic biosensor for detection of E. coli cells. In Proceedings of the COMSOL Users Conference 2006, October 22–24, 2006. Boston, MA, USA: COMSOL.

    Google Scholar 

  • Vidaček, S., Medić, H., Botka-Petrak, K., Nežak, J., & Petrak, T. (2008). Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax). Journal of Food Engineering, 88 263–271. DOI: 10.1016/j.jfoodeng.2008.02.010.

    Article  Google Scholar 

  • Wang, L., & Wu, Q. D. (2001). Ant system algorithm for optimization in continuous space. In Proceedings of the 2001 IEEE International Conference on Control Applications, September 7–7, 2011. Mexico City, Mexico: IEEE. DOI: 10.1109/cca.2001.973897.

    Google Scholar 

  • Wu, J., Ben, Y. X., & Chang, H. C. (2005). Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluidics and Nanofluidics, 1 161–167. DOI: 10.1007/s10404-004-0024-5.

    Article  Google Scholar 

  • Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. Journal of Food Engineering, 87 274–280. DOI: 10.1016/j.jfoodeng.2007.12.003.

    Article  Google Scholar 

  • Yang, L., & Bashir, R. (2008). Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances, 26 135–150. DOI: 10.1016/j.biotechadv.2007.10.003.

    Article  CAS  Google Scholar 

  • Yang, B., Meng, F., & Dong, Y. G. (2013). A coil-coupled sensor for electrolyte solution conductivity measurement. In Proceedings of the 2013 2nd International Conference on Measurement, Information and Control, August 16–18, 2013. Harbin, Heilongjiang, China: IEEE. DOI: 10.1109/mic.2013.6757915.

    Google Scholar 

  • Zhang, H. (1995). Electrical properties offoods. Food Engineering, 1, 152.

    Google Scholar 

  • Zheng, S. (2010). An investigation on electrical properties of major constituents of grape must under fermentation using of electrical impedance spectroscopy. Ph.D. thesis. Melbourne, Australia: RMIT University.

    Google Scholar 

  • Zhu, X. H., Guo, W. C., Wu, X. L., & Wang, S. J. (2012). Dielectric properties of chestnut flour relevant to drying with radio-frequency and microwave energy. Journal of Food Engineering, 113 143–150. DOI: 10.1016/j.jfoodeng.2012.04.014.

    Article  CAS  Google Scholar 

  • Zia, A. I., Syaifudin, A. R. M., Mukhopadhyay, S. C., Yu, P. L., Al-Bahadly, I. H., Gooneratne, C. P., Kosel, J., & Liao, T. S. (2013). Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices. Journal ofPhysics:Conference Series, 439, 012026. DOI: 10.1088/1742-6596/439/1/012026.

    Google Scholar 

  • Zsivanovits, G., Brashlyanova, B., & Karabadzhov, O. (2012). Dielectric impedance monitoring of heat pump drying of apple slices. Journal of Food Physics, 24–25 50–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romana Seidlová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidlová, R., Poživil, J., Seidl, J. et al. Electrode and electrodeless impedance measurement for determination of orange juices parameters. Chem. Pap. 69, 938–949 (2015). https://doi.org/10.1515/chempap-2015-0101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0101

Keywords

Navigation