Skip to main content
Log in

A novel efficient magnetic core-zeolitic shell nanocatalyst system: preparation, characterization and activity

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Analcime shell-nickel ferrite core microspheres were decorated with Pd and Pt nanoparticles with the aid of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The samples thus prepared were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), nitrogen adsorption-desorption isotherms, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) methods. The XRD patterns confirmed the growth of a zeolitic layer on the surface of the magnetic cores. The thermogravimetric analysis (TGA) curve clearly indicated the thermal decomposition of the loaded IL, which confirmed the presence of BMIM-PF6 in the structures. In addition, EDX analysis indicated that the samples contained 2.5 mass % of noble metal. The metallic species can be adsorbed on the modified surface and/or penetrate into the zeolitic channels in the structures. The results indicate that the X-IL/An/S/NF (X = Pt or Pd) metallic nanoparticles supported core-shell catalysts-samples were able to catalyse the selective oxidation of cyclohexene to 2-cyclohexene-1-ol under the induced conditions. The catalysts continued to be active after recycling up to 5 times. Eventually, a suitable mechanism was proposed for the selective oxidation of cyclohexene over the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cainelli, G., & Cardillo, G. (1984) Chromium oxidation in organic chemistry. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Cao, Y. H., Yu, H., Peng, F., & Wang, H. J. (2014) Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catalysis, 4, 1617–1625.DOI: 10.1021/cs500187q.

    Article  CAS  Google Scholar 

  • Deng, Y.H., Deng, C.H., Qi, D.W., Liu, C., Liu, J., Zhang, X. M., & Zhao, D. Y. (2009) Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. Advanced Materials, 21, 1377–1382.DOI: 10.1002/adma.200801766.

    Article  CAS  Google Scholar 

  • El-Korso, S., Khaldia, I., Bedrane, S., Choukchou-Braham, A., Thibault-Starzyk, F., & Bachir, R. (2014) Liquid phase cyclohexene oxidation over vanadia based catalysts with tert-butyl hydroperoxide: Epoxidation versus allylic oxidation. Journal of Molecular Catalysis A: Chemical, 394, 89–96.DOI: 10.1016/j.molcata.2014.07.002.

    Article  CAS  Google Scholar 

  • Ghosh, S., Acharyya, S. S., Adak, S., Konathala, L. N. S., Sasaki, T., & Bal, R. (2014) Selective oxidation of cyclohexene to adipic acid over silver supported tungsten oxide nanostructured catalysts. Green Chemistry, 16, 2826–2834.DOI: 10.1039/c4gc00130c.

    Article  CAS  Google Scholar 

  • Ibrasheva, R. H., & Zhubanov, K. A. (2000) Catalytic cracking of heavy oil fractions over natural zeolite contained composites. Studies in Surface Science and Catalysis, 130, 2447–2452.DOI: 10.1016/s0167-2991(00)80836-8.

    Article  Google Scholar 

  • Junaid, A. S. M., Street, C., Wang, W., Rahman, M. M., An, W., McCaffrey, W. C., & Kuznicki, S. M. (2012) Integrated extraction and low severity upgrading of oilsands bitumen by activated natural zeolite catalysts. Fuel, 94, 457–464.DOI: 10.1016/j.fuel.2011.10.043.

    Article  CAS  Google Scholar 

  • Lee, A. F., Gee, J. J., & Theyers, H. J. (2000) Aspects of allylic alcohol oxidation — a bimetallic heterogeneousselective oxidation catalyst. Green Chemistry, 2, 279–282.DOI: 10.1039/b006528p.

    Article  CAS  Google Scholar 

  • Lin, L., Zhang, T., Zhang, X., Liu, H., Yeung, K. L., & Qiu, J. (2014) A new Pd/SiO2@ZIF-8 core-shell catalyst with selective, anti-poisoning and anti-leaching properties for the hydrogenation of alkenes. Industrial & Engineering Chemistry Research, 53, 10906–10913.DOI: 10.1021/ie5013695.

    Article  CAS  Google Scholar 

  • Mahajani, S. M., Sharma, M. M., & Sridhar, T. (1999) Uncatalysed oxidation of cyclohexene. Chemical Engineering Science, 54, 3967–3976.DOI: 10.1016/s0009-2509(99)00095-0.

    Article  CAS  Google Scholar 

  • Padervand, M., & Gholami, M. R. (2013) Removal of toxic heavy metal ions from waste water by functionalized magnetic core-zeolitic shell nanocomposites as adsorbents. Environmental Science and Pollution Researches, 20, 3900–3909.DOI: 10.1007/s11356-012-1333-y.

    Article  CAS  Google Scholar 

  • Sakthivel, A., Dapurkar, S. E., & Selvam, P. (2001) Mesoporous (Cr)MCM-41 and (Cr)MCM-48 molecular sieves: Promising heterogeneous catalysts for liquid phase oxidation reactions. Catalysis Letters, 77, 155–158.DOI: 10.1023/a:1012711801043.

    Article  CAS  Google Scholar 

  • Sakthivel, A., & Selvam, P. (2002) Mesoporous (Cr)MCM-41: A mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane. Journal of Catalysis, 211, 134–143.DOI: 10.1006/jcat.2002.3711.

    Article  CAS  Google Scholar 

  • Sakthivel, A., Badamali, S. K., & Selvam, P. (2002) Catalytic oxidation of alkylaromatics over mesoporous (Cr)MCM-41. Catalysis Letters, 80, 73–76.DOI: 10.1023/a:1015330827806.

    Article  CAS  Google Scholar 

  • Sakthivel, A., Dapurkar, S. E., & Selvam, P. (2003) Allylic oxidation of cyclohexene over chromium containing mesoporous molecular sieves. Applied Catalysis A: General, 246, 283–293.DOI: 10.1016/s0926-860x(03)00051-6.

    Article  CAS  Google Scholar 

  • Smith, A. B., & Konopelski, J. P. (1984) Total synthesis of (+)-quadrone: Assignment of absolute stereochemistry. Journal of Organic Chemistry, 49, 4094–4095.DOI: 10.1021/jo00195a055.

    Article  CAS  Google Scholar 

  • Viswanadham, N., Kamble, R., Saxena, S. K., & Garg, M. O. (2008) Studies on octane boosting of industrial feedstocks on Pt/H-BEA zeolite. Fuel, 87, 2394–2400.DOI: 10.1016/j.fuel.2008.02.006.

    Article  CAS  Google Scholar 

  • Wang, R. M., Hao, C. J., He, Y. F., Xia, C. G., Wang, J. R., & Wang, Y. P. (1999) Polymer-bound Schiff-base complex catalyst for effective oxidation of olefins with molecular oxygen. Journal of Applied Polymer Science, 75, 1138–1143.DOI: 10.1002/(sici)1097-4628(20000228)75:9<1138::aid-app6>3.0.co;2-w.

    Article  Google Scholar 

  • Wasserscheid, P., & Welton, T. (2008) Ionic liquids in synthesis. Weinheim, Germany: Wiley. DOI: 10.1002/9783527621194.

    Google Scholar 

  • Waters, W. A. (1964) Mechanisms of oxidation of organic compounds. London, UK: Methuen.

    Google Scholar 

  • Weiner, H., Trovarelli, A., & Finke, R. G. (2003) Polyoxoanion-supported catalysis: Evidence for a P2W15Nb3O629−-supported iridium cyclohexene oxidation catalyst starting from [n-Bu4N]5Na3[(1,5-COD)Ir·P2W15Nb3O62]. Journal of Molecular Catalysis A: Chemical, 191, 253–279.DOI: 10.1016/s1381-1169(02)00343-6.

    Article  CAS  Google Scholar 

  • Weitcamp, J. (2000) Zeolites and catalysis. Solid State Ionics, 131, 175–188.DOI: 10.1016/s0167-2738(00)00632-9.

    Article  Google Scholar 

  • Wiberg, K. B. (1965) Oxidation in organic chemistry. New York, NY, USA: Academic Press.

    Google Scholar 

  • Yin, C. X., Yang, Z. H., Li, B., Zhang, F. M., Wang, J. Q., & Ou, E. C. (2009) Allylic oxidation of cyclohexene with molecular oxygen using cobalt resinate as catalyst. Catalysis Letters, 131, 440–443.DOI: 10.1007/s10562-009-9886-1.

    Article  CAS  Google Scholar 

  • Zhang, T., Zhang, X. F., Yan, X. J., Lin, L., Liu, H. O., Qiu, J. S., & Yeung, K. L. (2014) Core-shell Pd/ZSM-5@ZIF-8 membrane micro-reactors with size selectivity properties for alkene hydrogenation. Catalysis Today, 236, 41–48.DOI: 10.1016/j.cattod.2013.09.064.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Padervand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padervand, M., Vossoughi, M. & Janfada, B. A novel efficient magnetic core-zeolitic shell nanocatalyst system: preparation, characterization and activity. Chem. Pap. 69, 856–863 (2015). https://doi.org/10.1515/chempap-2015-0089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0089

Keywords

Navigation