Advertisement

Chemical Papers

, Volume 69, Issue 6, pp 779–790 | Cite as

Ultra-trace arsenic and mercury speciation and determination in blood samples by ionic liquid-based dispersive liquid-liquid microextraction combined with flow injection-hydride generation/cold vapor atomic absorption spectroscopy

  • Hamid Shirkhanloo
  • Aisan Khaligh
  • Hassan Zavvar Mousavi
  • Mohammad Mehdi Eskandari
  • Ali Akbar Miran-Beigi
Original Paper

Abstract

A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1–5.0 µg L−1 and 0.02 µg L−1 for As(III) and 0.15–8.50 µg L−1 and 0.03 µg L−1 for Hg(II) were achieved, respectively, at low RSD values of < 4% (N = 10). The developed method was successfully applied to determine the ultra-trace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.

Keywords

arsenic mercury microwave assisted-UV system ionic liquid-based dispersive liquid-liquid microextraction hydride generation/cold vapor atomic absorption spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, R., & Stoeppler, M. (1986) Decomposition and stability studies of methylmercury in water using cold vapour atomic absorption spectrometry The Analyst, 111, 1371–1374.DOI:  10.1039/an9861101371.CrossRefGoogle Scholar
  2. Bagheri, H., & Gholami, A. (2001) Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent. Talanta, 55, 1141–1150.DOI:  10.1016/s0039-9140(01)00546-x.CrossRefGoogle Scholar
  3. Campillo, N., Viñas, P., López-García, I., & Hernández-Córdoba, M. (2000) Determination of arsenic in biological fluids by electrothermal atomic absorption spectrometry. The Analyst, 125, 313–316.DOI:  10.1039/a907596h.CrossRefGoogle Scholar
  4. Capelo, J. L., Maduro, C., & Mota, A. M. (2004) Advanced oxidation processes for degradation of organomercurials: Determination of inorganic and total mercury in urine by FI-CV-AAS. Journal of Analytical Atomic Spectrometry, 19, 414–416.DOI:  10.1039/b314905f.CrossRefGoogle Scholar
  5. Chen, Y. C., Amarasiriwardena, C. J., Hsueh, Y. M., & Christiani, D. C. (2002) Stability of arsenic species and insoluble arsenic in human urine. Cancer Epidemiology Biomarkers & Prevention, 11, 1427–1433.Google Scholar
  6. Clarkson, T. W., Magos, L., & Myers, G. J. (2003) Human exposure to mercury: The three modern dilemmas. The Journal of Trace Elements in Experimental Medicine, 16, 321–343.DOI:  10.1002/jtra.10050.CrossRefGoogle Scholar
  7. Dadfarnia, S., Haji Shabani, A. M., Shirani Bidabadi, M., & Jafari, A. A. (2010) A novel ionic liquid/micro-volume back extraction procedure combined with flame atomic absorption spectrometry for determination of trace nickel in samples of nutritional interest. Journal of Hazardous Materials, 173, 534–538.DOI:  10.1016/j.jhazmat.2009.08.118.CrossRefGoogle Scholar
  8. Daye, M., Ouddane, B., Halwani, J., & Hamzeh, M. (2013) Solid phase extraction of inorganic mercury using 5-phenyl-azo-8-hydroxyquinoline and determination by cold vapor atomic fluorescence spectroscopy in natural water samples. The Scientific World Journal, 2013, 134565. DOI:  10.1155/2013/134565.CrossRefGoogle Scholar
  9. Diaz-Bone, R. A., Hollmann, M., Wuerfel, O., & Pieper, D. (2009) Analysis of volatile arsenic compounds formed by intestinal microorganisms: Rapid identification of new metabolic products by use of simultaneous EI-MS and ICP-MS detection after gas chromatographic separation. Journal of Analytical Atomic Spectrometry, 24, 808–814.DOI:  10.1039/b822968f.CrossRefGoogle Scholar
  10. Didi, M. A., Medjahed, B., & Benaouda, W. (2013) Adsorption by liquid-liquid extraction of Hg(II) from aqueous solutions using the 2-butyl-imidazolium di-(2-ethylhexyl) phosphate as ionic liquid. American Journal of Analytical Chemistry, 4, 40–47.DOI:  10.4236/ajac.2013.47a006.CrossRefGoogle Scholar
  11. Dugo, G., La Pera, L., Lo Turco, V., & Di Bella, G. (2005) Speciation of inorganic arsenic in alimentary and environmental aqueous samples by using derivative anodic stripping chronopotentiometry (dASCP). Chemosphere, 61, 1093–1101.DOI:  10.1016/j.chemosphere.2005.03.049.CrossRefGoogle Scholar
  12. Faniband, M., Lindh, C. H., & Jönsson, B. (2014) Human biological monitoring of suspected endocrine-disrupting compounds. Asian Journal of Andrology, 16, 5–16.DOI:  10.4103/1008-682x.122197.CrossRefGoogle Scholar
  13. Gallignani, M., Bahsas, H., Brunetto, M. R., Burguera, M., Burguera, J. L., & Petit de Peña, Y. (1998) A time-based flow injection-cold vapor-atomic absorption spectrometry system with on-line microwave sample pre-treatment for the determination of inorganic and total mercury in urine. Analytica Chimica Acta, 369, 57–67.DOI:  10.1016/s0003-2670(98)00217-7.CrossRefGoogle Scholar
  14. Gao, Y., Shi, Z. M., Long, Z., Wu, P., Zheng, C. B., & Hou, X. D. (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchemical Journal, 103, 1–14.DOI:  10.1016/j.microc.2012.02.001.CrossRefGoogle Scholar
  15. Hineman, A. (2012) Determination of as, se and hg in waters by hydride generation/cold vapor atomic absorption spectroscopy. Ontario, Canada: PerkinElmer. Retrieved October 2014 from http://www.perkinelmer.com/cmsresources/images/44-130442app_pinaacle-toxicmetalsinwaterbyhg-cvaa.pdfGoogle Scholar
  16. Hughes, M. F. (2002) Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133, 1–16.DOI:  10.1016/s0378-4274(02)00084-x.CrossRefGoogle Scholar
  17. Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011) Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123, 305–332.DOI:  10.1093/toxsci/kfr184.CrossRefGoogle Scholar
  18. Jackson, B. P., & Bertsch, P. M. (2001) Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environmental Science & Technology, 35, 4868–4873.DOI:  10.1021/es0107172.CrossRefGoogle Scholar
  19. Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011) Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31, 95–107.DOI:  10.1002/jat.1649.Google Scholar
  20. Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006) Human health effects from chronic arsenic poisoning — a review. Journal of Environmental Science and Health, Part A, 41, 2399–2428.DOI:  10.1080/10934520600873571.CrossRefGoogle Scholar
  21. Khatoon-Abadi, A., Sheikh Hoseini, A., & Khalili, B. (2008) Effect of mercury on the human health and environment: An overview. International Journal of Food Safety, Nutrition and Public Health, 1, 33–50.DOI:  10.1504/ijfs-nph.2008.018854.CrossRefGoogle Scholar
  22. Kim, B. G., Jo, E. M., Kim, G. Y., Kim, D. S., Kim, Y. M., Kim, R. B., Suh, B. S., & Hong, Y. S. (2012) Analysis of methylmercury concentration in the blood of Koreans by using cold vapor atomic fluorescence spectrophotometry. Annals of Laboratory Medicine, 32, 31–37.DOI:  10.3343/alm.2012.32.1.31.CrossRefGoogle Scholar
  23. Koh, J. H., Kwon, Y. S., & Pak, Y. N. (2005) Separation and sensitive determination of arsenic species (As3+/As5+) using the yeast-immobilized column and hydride generation in ICP-AES. Microchemical Journal, 80, 195–199.DOI:  10.1016/j.microc.2004.07.011.CrossRefGoogle Scholar
  24. Lepp, N. (2008) Biological monitoring: Theory and applications. Journal of Environmental Quality, 37, 1997. DOI:  10.2134/jeq2008.0012br.CrossRefGoogle Scholar
  25. Li, Y. F., Chen, C.Y., Li, B., Wang, Q., Wang, J.X., Gao, Y. X., Zhao, Y. L., & Chai, Z. F. (2007) Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 22, 925–930.DOI:  10.1039/b703310a.CrossRefGoogle Scholar
  26. Liang, P., & Sang, H. B. (2008) Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration. Analytical Biochemistry, 380, 21–25.DOI:  10.1016/j.ab.2008.05.008.CrossRefGoogle Scholar
  27. Liu, J. F., Jiang, G. B., Chi, Y. G., Cai, Y. Q., Zhou, Q. X., & Hu, J. T. (2003) Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Analytical Chemistry, 75, 5870–5876.DOI:  10.1021/ac034506m.CrossRefGoogle Scholar
  28. Martinis, E. M., Olsina, R. A., Altamirano, J. C., & Wuilloud, R. G. (2008) Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 628, 41–48.DOI:  10.1016/j.aca.2008.09.001.CrossRefGoogle Scholar
  29. Niemelä, M., Perämäki, P., & Piispanen, J. (2003) Microwave sample-digestion procedure for determination of arsenic in moss samples using electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 375, 673–678.DOI:  10.1007/s00216-003-1776-6.CrossRefGoogle Scholar
  30. Perna, L., LaCroix-Fralish, A., & Stürup, S. (2005) Determination of inorganic mercury and methylmercury in zooplankton and fish samples by speciated isotopic dilution GC-ICP-MS after alkaline digestion. Journal of Analytical Atomic Spectrometry, 20, 236–238.DOI:  10.1039/b410545a.CrossRefGoogle Scholar
  31. Pistón, M., Silva, J., Pérez-Zambra, R., Dol, I., & Knochen, M. (2012) Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS. Environmental Geochemistry and Health, 34, 273–278.DOI:  10.1007/s10653-011-9436-9.CrossRefGoogle Scholar
  32. Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116, 1–9. DOI:  10.1016/j.chroma.2006.03.007.CrossRefGoogle Scholar
  33. Ritsema, R., & van Heerde, E. (1997) Determination of total arsenic in urine by hydride AAS after UV-digestion. Fresenius’ Journal of Analytical Chemistry, 358, 838–843.DOI:  10.1007/s002160050519.CrossRefGoogle Scholar
  34. Rivas, R. E., López-García, I., & Hernández-Córdoba, M. (2009) Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 329–333.DOI:  10.1016/j.sab.2009.03.007.CrossRefGoogle Scholar
  35. Rodrigues, J. L., Alvarez, C. R., Fariñas, N. R., Nevado, J. J. B., Barbosa, F., Jr., & Martín-Doimeadios, R. C. R. (2011) Mercury speciation in whole blood by gas chromatography coupled to ICP-MS with a fast microwave-assisted sample preparation procedure. Journal of Analytical Atomic Spectrometry, 26, 436–442.DOI:  10.1039/c004931j.CrossRefGoogle Scholar
  36. Salaün, P., Planer-Friedrich, B., & van den Berg, C. M. C. (2007) Inorganic arsenic speciation in water and sea-water by anodic stripping voltammetry with a gold microelectrode. Analytica Chimica Acta, 585, 312–322.DOI:  10.1016/j.aca.2006.12.048.CrossRefGoogle Scholar
  37. Sarafraz-Yazdi, A., & Amiri, A. (2010) Liquid-phase microextraction. TrAC Trends in Analytical Chemistry, 29, 1–14.DOI:  10.1016/j.trac.2009.10.003.CrossRefGoogle Scholar
  38. Schober, S. E., Sinks, T. H., Jones, R. L., Bolger, P. M., McDowell, M., Osterloh, J., Garrett, E. S., Canady, R. A., Dillon, C. F., & Sun, Y. (2003) Blood mercury levels in US children and women of childbearing age 1999–2000. Jama, 289, 1667–1674.DOI:  10.1001/jama.289.13.1667.CrossRefGoogle Scholar
  39. Senn, E. P. (1997) Controlling metallic mercury exposure in the workplace: A guide for employers. Trenton, NJ, USA: Diane.Google Scholar
  40. Serafimovski, I., Karadjova, I. B., Stafilov, T., & Tsalev, D. L. (2006) Determination of total arsenic and toxicologically relevant arsenic species in fish by using electrothermal and hydride generation atomic absorption spectrometry. Microchemical Journal, 83, 55–60.DOI:  10.1016/j.microc.2006.01.021.CrossRefGoogle Scholar
  41. Shemirani, F., Baghdadi, M., & Ramezani, M. (2005) Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta, 65, 882–887.DOI:  10.1016/j.talanta.2004.08.009.CrossRefGoogle Scholar
  42. Shirkhanloo, H., Rouhollahi, A., & Mousavi, H. Z. (2011) Ultra-trace arsenic determination in urine and whole blood samples by flow injection-hydride generation atomic absorption spectrometry after preconcentration and speciation based on dispersive liquid-liquid microextraction. Bulletin of the Korean Chemical Society, 32, 3923–3927.DOI:  10.5012/bkcs.2011.32.11.3923.CrossRefGoogle Scholar
  43. Sounderajan, S., Udas, A. C., & Venkataramani, B. (2007) Characterization of arsenic(V) and arsenic(III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy. Journal of Hazardous Materials, 149, 238–242.DOI:  10.1016/j.jhazmat.2007.07.035.CrossRefGoogle Scholar
  44. Tchounwou, P. B., Patlolla, A. K., & Centeno, J. A. (2003) Invited reviews: Carcinogenic and systemic health effects associated with arsenic exposure — a critical review. Toxicologic Pathology, 31, 575–588.DOI:  10.1080/01926230390242007.Google Scholar
  45. Torres, D. P., Borges, D. L. G., Frescura, V. L. A., & Curtius, A. J. (2009) A simple and fast approach for the determination of inorganic and total mercury in aqueous slurries of biological samples using cold vapor atomic absorption spectrometry and in situ oxidation. Journal of Analytical Atomic Spectrometry, 24, 1118–1122.DOI:  10.1039/b816622f.CrossRefGoogle Scholar
  46. Tsoi, Y. K., Tam, S., & Leung, K. S. Y. (2010) Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase microextraction coupled to LC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25, 1758–1762.DOI:  10.1039/c0ja00024h.CrossRefGoogle Scholar
  47. Wang, M., Feng, W. Y., Shi, J. W., Zhang, F., Wang, B., Zhu, M. T., Li, B., Zhao, Y. L., & Chai, Z. F. (2007) Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta, 71, 2034–2039.DOI:  10.1016/j.talanta.2006.09.012.CrossRefGoogle Scholar
  48. Yoshimura, Y., Endo, Y., Shimoda, Y., Yamanaka, K., & Endo, G. (2011) Acute arsine poisoning confirmed by speciation analysis of arsenic compounds in the plasma and urine by HPLC-ICP-MS. Journal of Occupational Health, 53, 45–49.DOI:  10.1539/joh.L10108.CrossRefGoogle Scholar
  49. Yoshizawa, K., Rimm, E. B., Morris, J. S., Spate, V. L., Hsieh, C. C., Spiegelman, D., Stampfer, M. J., & Willett, W. C. (2002) Mercury and the risk of coronary heart disease in men. New England Journal of Medicine, 347, 1755–1760.DOI:  10.1056/nejmoa021437.CrossRefGoogle Scholar
  50. Zhang, L., Morita, Y., Sakuragawa, A., & Isozaki, A. (2007) Inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Talanta, 72, 723–729.DOI:  10.1016/j.talanta.2006.12.001.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  • Hamid Shirkhanloo
    • 1
  • Aisan Khaligh
    • 2
  • Hassan Zavvar Mousavi
    • 2
  • Mohammad Mehdi Eskandari
    • 3
  • Ali Akbar Miran-Beigi
    • 3
  1. 1.Iranian Petroleum Industry Occupational and Environmental Health Research Center (IPIOEHRC)Iranian Petroleum Industry Health Research Institute (IPIHRI)TehranIran
  2. 2.Department of ChemistrySemnan UniversitySemnanIran
  3. 3.Research Institute of Petroleum Industry (RIPI)TehranIran

Personalised recommendations