Chemical Papers

, Volume 69, Issue 5, pp 679–689 | Cite as

Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane

  • Shiva Agarwal
  • M. Teresa A. Reis
  • M. Rosinda C. Ismael
  • Jorge M. R. Carvalho
Original Paper

Abstract

The extraction of copper from sulphuric/sulphate solutions using a hollow fibre module as contactor was studied. The aldoxime Acorga M5640 was used as an extractant. The effects on the extraction rate of the flow-rates, the concentrations of copper and extractant, pH, and the presence of Na2SO4 in the feed phase were investigated. The overall mass transfer coefficient for copper extraction was calculated from the experimental data and was compared with the value evaluated by the resistance in the series model. The extraction process was found to be governed by the diffusion in the boundary aqueous layer and also by the chemical reaction. The kinetic data obtained were used to simulate the extraction of copper with the pseudo-emulsion-based hollow fibre with strip dispersion technique. The accordance between the results thus calculated and the experimental data was found to be satisfactory, particularly for dilute feed solutions.

Keywords

copper extraction Acorga M5640 hollow fibre liquid membranes 

Symbols

a

activity

di

fibre inner diameter m

dlm

logarithmic mean of fibre diameters (dodi)/ln(do/di) m

do

fibre outer diameter m

I

ionic strength M

Kaq

overall mass transfer coefficient of extraction m s−1

KP

overall mass transfer coefficient of permeation m s−1

k

local mass transfer coefficient m s−1

m

distribution ratio ([Cu]org/[Cu]aq)

Q

volumetric flow-rate m3 s−1

R

resistance to mass transfer s m−1

R2

regression coefficient

V

volume of phase m3

x, y

coordinates

Δ

fractional resistance

α

fraction of free copper ions, [Cu2+]/[Cu(II)]

γ

activity coefficient

Subscripts and superscripts

aq

aqueous feed phase

F

forward reaction of extraction

m

membrane

org

organic phase

pseudo

pseudo-emulsion phase

r

chemical reactionofextraction

s

shell

t

tube

0

initial value

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, S., Reis, M. T. A., Ismael, M. R. C., Correia, M. J. N., & Carvalho, J. M. R. (2012). Modeling of the extraction equilibrium of copper from sulfate solutions with Acorga M5640. Solvent Extraction and Ion Exchange, 30, 536–551. DOI:  10.1080/07366299.2012.670603.CrossRefGoogle Scholar
  2. Agarwal, S., Reis, M. T. A., Ismael, M. R. C., Correia, M. J. N., & Carvalho, J. M. R. (2013). Application of pseudo-emulsion based hollow fibre strip dispersion (PEHFSD) for the recovery of copper from sulphate solutions. Separation and Purification Technology, 102, 103–110. DOI:  10.1016/j.seppur.2012.09.026.CrossRefGoogle Scholar
  3. Agrawal, A., & Sahu, K. K. (2010). Problems, prospects and current trends of copper recycling in India: An overview. Resources, Conservation and Recycling, 54, 401–416. DOI:  10.1016/j.resconrec.2009.09.005.CrossRefGoogle Scholar
  4. Alguacil, F. J., & Alonso, M. (2002). Recovery of Cu(II) from diluted aqueous solutions by non-dispersive solvent extraction. Revista de Metalurgia, 38, 263–269. DOI:  10.3989/revmetalm.2002.v38.i4.409.CrossRefGoogle Scholar
  5. Alguacil, F. J., Alonso, M., Lopez, F. A., Lopez-Delgado, A., Padilla, I., & Tayibi, H. (2010). Pseudo-emulsion based hollow fiber with strip dispersion pertraction of iron(III) using (PJMTH+)2(SO42−) ionic liquid as carrier. Chemical Engineering Journal, 157, 366–372. DOI:  10.1016/j.cej.2009.11.016.CrossRefGoogle Scholar
  6. Berrios, J., Pyle, D. L., & Aroca, G. (2010). Gibberellic acid extraction from aqueous solutions and fermentation broths by using emulsion liquid membranes. Journal of Membrane Science, 348, 91–98. DOI:  10.1016/j.memsci.2009.10.040.CrossRefGoogle Scholar
  7. Bothun, G. D., Knutson, B. L., Strobel, H. J., Nokes, S. E., Brignole, E. A., & Díaz, S. (2003). Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor. The Journal of Supercritical Fluids, 25, 119–134. DOI:  10.1016/s0896-8446(02)00093-1.CrossRefGoogle Scholar
  8. Campderrós, M. E., Acosta, A., & Marchese, J. (1998). Selective separation of copper with Lix 864 in a hollow fiber module. Talanta, 47, 19–24. DOI:  10.1016/s0039-9140(98)00048-4.CrossRefGoogle Scholar
  9. Ferreira, A. E., Agarwal, S., Machado, R. M., Gameiro, M. L. F., Santos, S. M. C., Reis, M. T. A., Ismael, M. R. C., Correia, M. J. N., & Carvalho, J. M. R. (2010). Extraction of copper from acidic leach solution with Acorga M5640 using a pulsed sieve plate column. Hydrometallurgy, 104, 66–75. DOI:  10.1016/j.hydromet.2010.04.013.CrossRefGoogle Scholar
  10. Fouad, E. A., & Bart, H. J. (2007). Separation of zinc by a non-dispersion solvent extraction process in a hollow fiber contactor. Solvent Extraction and Ion Exchange, 25, 857–877. DOI:  10.1080/07366290701634610.CrossRefGoogle Scholar
  11. Gabelman, A., & Hwang, S. T. (1999). Hollow fiber membrane contactors. Journal of Membrane Science, 159, 61–106. DOI:  10.1016/s0376-7388(99)00040-x.CrossRefGoogle Scholar
  12. Gameiro, M. L. F., Bento, P., Ismael, M. R. C., Reis, M. T. A., & Carvalho, J. M. R. (2007). Extraction of copper from ammoniacal medium by emulsion liquid membranes using LIX 54. Journal of Membrane Science, 293, 151–160. DOI:  10.1016/j.memsci.2007.02.010.CrossRefGoogle Scholar
  13. Gameiro, M. L. F., Ismael, M. R. C., Reis, M. T. A., & Carvalho, J. M. R. (2008). Recovery of copper from ammoniacal medium using liquid membranes with LIX 54. Separation and Purification Technology, 63, 287–296. DOI:  10.1016/j.seppur.2008.05.009.CrossRefGoogle Scholar
  14. Gameiro, M. L. F., Ismael, M. R. C., Reis, M. T. A., Santos, S. M. C., & Carvalho, J. M. R. (2010). Extraction of copper from aqueous solutions by liquid membrane processes. Solvent Extraction and Ion Exchange, 28, 85–108. DOI:  10.1080/07366290903408557.CrossRefGoogle Scholar
  15. Kumar, A., Haddad, R., Alguacil, F. J., & Sastre, A. M. (2005). Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber modules. Journal of Membrane Science, 248, 1–14. DOI:  10.1016/j.memsci.2004.09.003.CrossRefGoogle Scholar
  16. Lazarova, Z., Syska, B., & Schügerl, K. (2002). Application of large-scale hollow fiber membrane contactors for simultaneous extractive removal and stripping of penicillin G. Journal of Membrane Science, 202, 151–164. DOI:  10.1016/s0376-7388(01)00748-7.CrossRefGoogle Scholar
  17. Li, N. N. (1971). Permeation through liquid surfactant membranes. AIChE Journal, 17, 459–463. DOI:  10.1002/aic.690170239.CrossRefGoogle Scholar
  18. Lin, S. H., & Juang, R. S. (2001). Mass-transfer in hollow-fibre modules for extraction and back-extraction of copper(II) with LIX64N carriers. Journal of Membrane Science, 188, 251–262. DOI:  10.1016/s0376-7388(01)00383-0.CrossRefGoogle Scholar
  19. Lorbach, D., Bart, H. J., & Marr, R. (1986). Mass transfer in liquid membrane permeation. German Chemical Engineering, 9(5), 321–327.Google Scholar
  20. Mihal’, M., Markoš J., & Štefuca, V. (2011). Membrane extraction of 1-phenylethanol from fermentation solution. Chemical Papers, 65, 156–166. DOI:  10.2478/s11696-010-0096-5.Google Scholar
  21. Prapasawat, T., Lothongkum, A. W., & Pancharoen, U. (2014). Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane. Chemical Papers, 68, 180–189. DOI:  10.2478/s11696-013-0425-6.CrossRefGoogle Scholar
  22. Pabby, A. K., & Sastre, A. M. (2013). State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. Journal of Membrane Science, 430, 263–303. DOI:  10.1016/j.memsci.2012.11.060.CrossRefGoogle Scholar
  23. Prasad, R., & Sirkar, K. K. (1992). Membrane-based solvent extraction. In W. S. W. Ho, & K. K. Sirkar (Eds.), Membrane handbook (pp. 727–763). New York, NY, USA: Van Nostrand Reinhold. DOI:  10.1007/978-1-4615-3548-5_41.CrossRefGoogle Scholar
  24. Reis, M. T. A., de Freitas, O. M. F., Ismael, M. R. C., & Carvalho, J. M. R. (2007). Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923. Journal of Membrane Science, 305, 313–324. DOI:  10.1016/j.memsci.2007.08.016.CrossRefGoogle Scholar
  25. Reis, M. T. A., Freitas, O. M. F., Agarwal, S., Ferreira, L. M., Ismael, M. R. C., Machado, R., & Carvalho, J. M. R. (2011). Removal of phenols from aqueous solutions by emulsion liquid membranes. Journal of Hazardous Materials, 192, 986–994. DOI:  10.1016/j.jhazmat.2011.05.092.CrossRefGoogle Scholar
  26. Shen, S. F., Kentish, S. E., & Stevens, G. W. (2010). Shell-side mass-transfer performance in hollow-fiber membrane contactors, Solvent Extraction and Ion Exchange, 28, 817–844, DOI:  10.1080/07366299.2010.515176.CrossRefGoogle Scholar
  27. Soldenhoff, K., Shamieh, M., & Manis, A. (2005). Liquid-liquid extraction of cobalt with hollow fiber contactor. Journal of Membrane Science, 252, 183–194. DOI:  10.1016/j.memsci.2004.12.008.CrossRefGoogle Scholar
  28. Sonawane, J. V., Pabby, A. K., & Sastre, A. M. (2008). Pseudo-emulsion based hollow fiber strip dispersion: A novel methodology for gold recovery. AIChE Journal, 54, 453–463. DOI:  10.1002/aic.11371.CrossRefGoogle Scholar
  29. Valenzuela, F., Basualto, C., Tapia, C., & Sapag, J. (1999). Application of hollow-fiber supported liquid membrane technique to the selective recovery of a low content of copper from Chilean mine water. Journal of Membrane Science, 155, 163–168. DOI:  10.1016/s0376-7388(98)00321-4.CrossRefGoogle Scholar
  30. Valenzuela, F. R., Basualto, C., Tapia, C., Sapag, J., & Paratori, C. (1996). Recovery of copper from leaching residual solutions by means of a hollow-fiber membrane extractor. Minerals Engineering, 9, 15–22. DOI:  10.1016/0892-6875(95)00128-x.CrossRefGoogle Scholar
  31. Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1, 264–270. DOI:  10.1002/aic.690010222.CrossRefGoogle Scholar
  32. Williams, N. S., Ray, M. B., & Gomaa, H. G. (2012). Removal of ibuprofen and 4-isobutylacetophenone by non-dispersive solvent extraction using a hollow fibre membrane contactor. Separation and Purification Technology, 88, 61–69. DOI:  10.1016/j.seppur.2011.11.022.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  • Shiva Agarwal
    • 1
  • M. Teresa A. Reis
    • 1
  • M. Rosinda C. Ismael
    • 1
  • Jorge M. R. Carvalho
    • 1
  1. 1.Centre for Natural Resources and the Environment (CERENA) and Centre for Chemical Processes (CPQ), Department of Chemical EngineeringInstituto Superior TécnicoLisboaPortugal

Personalised recommendations