Skip to main content
Log in

Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The extraction of copper from sulphuric/sulphate solutions using a hollow fibre module as contactor was studied. The aldoxime Acorga M5640 was used as an extractant. The effects on the extraction rate of the flow-rates, the concentrations of copper and extractant, pH, and the presence of Na2SO4 in the feed phase were investigated. The overall mass transfer coefficient for copper extraction was calculated from the experimental data and was compared with the value evaluated by the resistance in the series model. The extraction process was found to be governed by the diffusion in the boundary aqueous layer and also by the chemical reaction. The kinetic data obtained were used to simulate the extraction of copper with the pseudo-emulsion-based hollow fibre with strip dispersion technique. The accordance between the results thus calculated and the experimental data was found to be satisfactory, particularly for dilute feed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

activity

d i :

fibre inner diameter m

d lm :

logarithmic mean of fibre diameters (dodi)/ln(do/di) m

d o :

fibre outer diameter m

I:

ionic strength M

K aq :

overall mass transfer coefficient of extraction m s−1

K P :

overall mass transfer coefficient of permeation m s−1

k:

local mass transfer coefficient m s−1

m:

distribution ratio ([Cu]org/[Cu]aq)

Q:

volumetric flow-rate m3 s−1

R:

resistance to mass transfer s m−1

R 2 :

regression coefficient

V:

volume of phase m3

x, y:

coordinates

Δ:

fractional resistance

α:

fraction of free copper ions, [Cu2+]/[Cu(II)]

γ:

activity coefficient

aq:

aqueous feed phase

F:

forward reaction of extraction

m:

membrane

org:

organic phase

pseudo:

pseudo-emulsion phase

r:

chemical reactionofextraction

s:

shell

t:

tube

0:

initial value

References

  • Agarwal, S., Reis, M. T. A., Ismael, M. R. C., Correia, M. J. N., & Carvalho, J. M. R. (2012). Modeling of the extraction equilibrium of copper from sulfate solutions with Acorga M5640. Solvent Extraction and Ion Exchange, 30, 536–551. DOI: 10.1080/07366299.2012.670603.

    Article  CAS  Google Scholar 

  • Agarwal, S., Reis, M. T. A., Ismael, M. R. C., Correia, M. J. N., & Carvalho, J. M. R. (2013). Application of pseudo-emulsion based hollow fibre strip dispersion (PEHFSD) for the recovery of copper from sulphate solutions. Separation and Purification Technology, 102, 103–110. DOI: 10.1016/j.seppur.2012.09.026.

    Article  CAS  Google Scholar 

  • Agrawal, A., & Sahu, K. K. (2010). Problems, prospects and current trends of copper recycling in India: An overview. Resources, Conservation and Recycling, 54, 401–416. DOI: 10.1016/j.resconrec.2009.09.005.

    Article  Google Scholar 

  • Alguacil, F. J., & Alonso, M. (2002). Recovery of Cu(II) from diluted aqueous solutions by non-dispersive solvent extraction. Revista de Metalurgia, 38, 263–269. DOI: 10.3989/revmetalm.2002.v38.i4.409.

    Article  CAS  Google Scholar 

  • Alguacil, F. J., Alonso, M., Lopez, F. A., Lopez-Delgado, A., Padilla, I., & Tayibi, H. (2010). Pseudo-emulsion based hollow fiber with strip dispersion pertraction of iron(III) using (PJMTH+)2(SO 2−4 ) ionic liquid as carrier. Chemical Engineering Journal, 157, 366–372. DOI: 10.1016/j.cej.2009.11.016.

    Article  CAS  Google Scholar 

  • Berrios, J., Pyle, D. L., & Aroca, G. (2010). Gibberellic acid extraction from aqueous solutions and fermentation broths by using emulsion liquid membranes. Journal of Membrane Science, 348, 91–98. DOI: 10.1016/j.memsci.2009.10.040.

    Article  CAS  Google Scholar 

  • Bothun, G. D., Knutson, B. L., Strobel, H. J., Nokes, S. E., Brignole, E. A., & Díaz, S. (2003). Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor. The Journal of Supercritical Fluids, 25, 119–134. DOI: 10.1016/s0896-8446(02)00093-1.

    Article  CAS  Google Scholar 

  • Campderrós, M. E., Acosta, A., & Marchese, J. (1998). Selective separation of copper with Lix 864 in a hollow fiber module. Talanta, 47, 19–24. DOI: 10.1016/s0039-9140(98)00048-4.

    Article  Google Scholar 

  • Ferreira, A. E., Agarwal, S., Machado, R. M., Gameiro, M. L. F., Santos, S. M. C., Reis, M. T. A., Ismael, M. R. C., Correia, M. J. N., & Carvalho, J. M. R. (2010). Extraction of copper from acidic leach solution with Acorga M5640 using a pulsed sieve plate column. Hydrometallurgy, 104, 66–75. DOI: 10.1016/j.hydromet.2010.04.013.

    Article  CAS  Google Scholar 

  • Fouad, E. A., & Bart, H. J. (2007). Separation of zinc by a non-dispersion solvent extraction process in a hollow fiber contactor. Solvent Extraction and Ion Exchange, 25, 857–877. DOI: 10.1080/07366290701634610.

    Article  CAS  Google Scholar 

  • Gabelman, A., & Hwang, S. T. (1999). Hollow fiber membrane contactors. Journal of Membrane Science, 159, 61–106. DOI: 10.1016/s0376-7388(99)00040-x.

    Article  CAS  Google Scholar 

  • Gameiro, M. L. F., Bento, P., Ismael, M. R. C., Reis, M. T. A., & Carvalho, J. M. R. (2007). Extraction of copper from ammoniacal medium by emulsion liquid membranes using LIX 54. Journal of Membrane Science, 293, 151–160. DOI: 10.1016/j.memsci.2007.02.010.

    Article  CAS  Google Scholar 

  • Gameiro, M. L. F., Ismael, M. R. C., Reis, M. T. A., & Carvalho, J. M. R. (2008). Recovery of copper from ammoniacal medium using liquid membranes with LIX 54. Separation and Purification Technology, 63, 287–296. DOI: 10.1016/j.seppur.2008.05.009.

    Article  CAS  Google Scholar 

  • Gameiro, M. L. F., Ismael, M. R. C., Reis, M. T. A., Santos, S. M. C., & Carvalho, J. M. R. (2010). Extraction of copper from aqueous solutions by liquid membrane processes. Solvent Extraction and Ion Exchange, 28, 85–108. DOI: 10.1080/07366290903408557.

    Article  CAS  Google Scholar 

  • Kumar, A., Haddad, R., Alguacil, F. J., & Sastre, A. M. (2005). Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber modules. Journal of Membrane Science, 248, 1–14. DOI: 10.1016/j.memsci.2004.09.003.

    Article  CAS  Google Scholar 

  • Lazarova, Z., Syska, B., & Schügerl, K. (2002). Application of large-scale hollow fiber membrane contactors for simultaneous extractive removal and stripping of penicillin G. Journal of Membrane Science, 202, 151–164. DOI: 10.1016/s0376-7388(01)00748-7.

    Article  CAS  Google Scholar 

  • Li, N. N. (1971). Permeation through liquid surfactant membranes. AIChE Journal, 17, 459–463. DOI: 10.1002/aic.690170239.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Juang, R. S. (2001). Mass-transfer in hollow-fibre modules for extraction and back-extraction of copper(II) with LIX64N carriers. Journal of Membrane Science, 188, 251–262. DOI: 10.1016/s0376-7388(01)00383-0.

    Article  CAS  Google Scholar 

  • Lorbach, D., Bart, H. J., & Marr, R. (1986). Mass transfer in liquid membrane permeation. German Chemical Engineering, 9(5), 321–327.

    Google Scholar 

  • Mihal’, M., Markoš J., & Štefuca, V. (2011). Membrane extraction of 1-phenylethanol from fermentation solution. Chemical Papers, 65, 156–166. DOI: 10.2478/s11696-010-0096-5.

    Google Scholar 

  • Prapasawat, T., Lothongkum, A. W., & Pancharoen, U. (2014). Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane. Chemical Papers, 68, 180–189. DOI: 10.2478/s11696-013-0425-6.

    Article  CAS  Google Scholar 

  • Pabby, A. K., & Sastre, A. M. (2013). State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. Journal of Membrane Science, 430, 263–303. DOI: 10.1016/j.memsci.2012.11.060.

    Article  CAS  Google Scholar 

  • Prasad, R., & Sirkar, K. K. (1992). Membrane-based solvent extraction. In W. S. W. Ho, & K. K. Sirkar (Eds.), Membrane handbook (pp. 727–763). New York, NY, USA: Van Nostrand Reinhold. DOI: 10.1007/978-1-4615-3548-5_41.

    Chapter  Google Scholar 

  • Reis, M. T. A., de Freitas, O. M. F., Ismael, M. R. C., & Carvalho, J. M. R. (2007). Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923. Journal of Membrane Science, 305, 313–324. DOI: 10.1016/j.memsci.2007.08.016.

    Article  CAS  Google Scholar 

  • Reis, M. T. A., Freitas, O. M. F., Agarwal, S., Ferreira, L. M., Ismael, M. R. C., Machado, R., & Carvalho, J. M. R. (2011). Removal of phenols from aqueous solutions by emulsion liquid membranes. Journal of Hazardous Materials, 192, 986–994. DOI: 10.1016/j.jhazmat.2011.05.092.

    Article  CAS  Google Scholar 

  • Shen, S. F., Kentish, S. E., & Stevens, G. W. (2010). Shell-side mass-transfer performance in hollow-fiber membrane contactors, Solvent Extraction and Ion Exchange, 28, 817–844, DOI: 10.1080/07366299.2010.515176.

    Article  CAS  Google Scholar 

  • Soldenhoff, K., Shamieh, M., & Manis, A. (2005). Liquid-liquid extraction of cobalt with hollow fiber contactor. Journal of Membrane Science, 252, 183–194. DOI: 10.1016/j.memsci.2004.12.008.

    Article  CAS  Google Scholar 

  • Sonawane, J. V., Pabby, A. K., & Sastre, A. M. (2008). Pseudo-emulsion based hollow fiber strip dispersion: A novel methodology for gold recovery. AIChE Journal, 54, 453–463. DOI: 10.1002/aic.11371.

    Article  CAS  Google Scholar 

  • Valenzuela, F., Basualto, C., Tapia, C., & Sapag, J. (1999). Application of hollow-fiber supported liquid membrane technique to the selective recovery of a low content of copper from Chilean mine water. Journal of Membrane Science, 155, 163–168. DOI: 10.1016/s0376-7388(98)00321-4.

    Article  CAS  Google Scholar 

  • Valenzuela, F. R., Basualto, C., Tapia, C., Sapag, J., & Paratori, C. (1996). Recovery of copper from leaching residual solutions by means of a hollow-fiber membrane extractor. Minerals Engineering, 9, 15–22. DOI: 10.1016/0892-6875(95)00128-x.

    Article  CAS  Google Scholar 

  • Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1, 264–270. DOI: 10.1002/aic.690010222.

    Article  CAS  Google Scholar 

  • Williams, N. S., Ray, M. B., & Gomaa, H. G. (2012). Removal of ibuprofen and 4-isobutylacetophenone by non-dispersive solvent extraction using a hollow fibre membrane contactor. Separation and Purification Technology, 88, 61–69. DOI: 10.1016/j.seppur.2011.11.022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rosinda C. Ismael.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Reis, M.T.A., Ismael, M.R.C. et al. Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane. Chem. Pap. 69, 679–689 (2015). https://doi.org/10.1515/chempap-2015-0076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0076

Keywords

Navigation