Skip to main content

Advertisement

Log in

Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The presented paper deals with the numerical analysis of pseudo-steady state conditions used in the modelling of the batch dialysis process. First, under specified conditions, time dependences of component concentrations and liquid volumes in both compartments were generated using a rigorous model based on Fick’s second law. From these data, the diffusion coefficient of the component in the membrane was calculated using a simplified model based on Fick’s first law. The specified coefficient was then compared with the calculated one. Numerical analysis revealed that in case of not too thick membranes, sufficiently high values of the diffusion coefficient, high intensity of mixing and considering the concentration and volume data in compartments I and II, the pseudo-steady state conditions can be considered as a good approximation of the real state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akgemci, E. G., Ersöz, M., & Atalay, T. (2005). Transport of formic acid through anion exchange membranes by diffusion dialysis and electro-electro dialysis. Separation Science and Technology, 39, 165–184. DOI: 10.1081/ss-120027407.

    Article  Google Scholar 

  • Alexandrova, I., & Iordanov, G. (2005). Transport of cadmium and iron through a carboxylic membrane based on poly(vinyl chloride)/poly(methyl methacrylate-co-divinyl benzene) system. Journal of Applied Polymer Science, 95, 705–707. DOI: 10.1002/app.21230.

    Article  CAS  Google Scholar 

  • Allen, C. A., Cummings, D. G., & McCaffrey, R. R. (1989). Separation of Cr ions from Co and Mn ions by poly[bis(trifluoroethoxy)phosphazene] membranes. Journal of Membrane Science, 43, 217–228. DOI: 10.1016/s0376-7388(00)85099-1.

    Article  CAS  Google Scholar 

  • Audinos, R. & Pichelin, G. (1988). Characterization of electrodialysis membranes by chronopotentiometry. Desalination, 68, 251–263. DOI: 10.1016/0011-9164(88)80059-6.

    Article  CAS  Google Scholar 

  • Elmidaoui, A., Cherif, A. T., Molenat, J., & Gavach, C. (1995). Transfer of H2SO4,Na2SO4 and ZnSO4 by dialysis through an anion exchange membrane. Desalination, 101, 39–46. DOI: 10.1016/0011-9164(95)00006-n.

    Article  CAS  Google Scholar 

  • Ersoz, M., Gugul, I. H., & Sahin, A. (2001). Transport of acids through polyether-sulfone anion-exchange membrane. Journal of Colloid and Interface Science, 237, 130–135. DOI: 10.1006/jcis.2001.7487.

    Article  CAS  Google Scholar 

  • Hao, J. W., Gong, M., Wu, Y. H., Wu, C. M., Luo, J.Y., & Xu, T. W. (2013a). Alkali recovery using PVA/SiO2 cation exchange membranes with different —COOH contents. Journal of Hazardous Materials, 244–245, 348–356. DOI: 10.1016/j.jhazmat.2012.11.056.

    Article  Google Scholar 

  • Hao, J. W., Wu, Y. H., & Xu, T. W. (2013b). Cation exchange hybrid membranes prepared from PVA and multisilicon copolymer for application in alkali recovery Journal of Membrane Science, 425–426, 156–162. DOI: 10.1016/j.memsci.2012.09.024.

    Article  Google Scholar 

  • Heintz, A., & Illenberger, C. (1996). Diffusion coefficients of Br2 in cation exchange membranes. Journal of Membrane Science, 113, 175–181. DOI: 10.1016/0376-7388(95)00026-7.

    Article  CAS  Google Scholar 

  • Kaczmarek, M. S., Ładziński, P., Woźniak, Z., Błaszczak, Z., Surma, M., & Pochylski, M. (2008). Dynamics of transportation of glucose and urea water solutions through a porous polyethyleneterephthalate membrane studied by optical interference. Journal of Molecular Liquids, 138, 168–172. DOI: 10.1016/j.molliq.2007.10.002.

    Article  CAS  Google Scholar 

  • Kang, M. S., Yoo, K. S., Oh, S. J., & Moon, S. H. (2001). A lumped parameter model to predict hydrochloric acid recovery in diffusion dialysis. Journal of Membrane Science, 188, 61–70. DOI: 10.1016/s0376-7388(01)00372-6.

    Article  CAS  Google Scholar 

  • Luo, J. Y., Wu, C. M., Wu, Y. H., & Xu, T. W. (2010). Diffusion dialysis of hydrochloric acid at different temperatures using PPO-SiO2 hybrid anion exchange membranes. Journal of Membrane Science, 347, 240–249. DOI: 10.1016/j.memsci.2009.10.029.

    Article  CAS  Google Scholar 

  • Narebska, A., & Warszawski, A. (1992). Diffusion dialysis. Effect of membrane composition on acid/salt separation. Separation Science and Technology, 27, 703–715. DOI: 10.1080/01496399208019719.

    Article  CAS  Google Scholar 

  • Narebska, A., & Staniszewski, M. (1997). Separation of fermentation products by membrane techniques. I. Separation of lactic acid/lactates by diffusion dialysis. Separation Science and Technology, 32, 1669–1682. DOI: 10.1080/01496399708000727.

    Article  CAS  Google Scholar 

  • Narebska, A., & Staniszewski, M. (2008). Separation of carboxylic acids from carboxylates by diffusion dialysis. Separation Science and Technology, 43, 490–501. DOI: 10.1080/01496390701787388.

    Article  CAS  Google Scholar 

  • Palatý, Z., & Žáková, A. (2000). Apparent diffusivity of some inorganic acids in anion-exchange membrane. Journal of Membrane Science, 173, 211–223. DOI: 10.1016/s0376-7388(00)00363-x.

    Article  Google Scholar 

  • Palatý, Z., Stoček, P., Žáková, A., & Bendová, H. (2007). Transport characteristics of some carboxylic acids in the polymeric anion-exchange membrane Neosepta-AMH: Batch experiments. Journal of Applied Polymer Science, 106, 909–916. DOI: 10.1002/app.26516.

    Article  Google Scholar 

  • Palatý, Z., Kaláb, J., & Bendová, H. (2010). Transport properties of propionic acid in anion-exchange membrane Neosepta-AFN. Journal of Membrane Science, 349, 90–96. DOI: 10.1016/j.memsci.2009.11.034.

    Article  Google Scholar 

  • Sudoh, M., Kamei, H., & Nakamura, S. (1987). Donnan dialysis concentration of cupric ions. Journal of Chemical Engineering of Japan, 20, 34–40. DOI: 10.1252/jcej.20.34.

    Article  CAS  Google Scholar 

  • Suhara, M., Suzuki, K., Horie, H., & Shimohira, T. (1989). Transport numbers in perfluorocarboxylate cation-exchange membrane. Journal of Membrane Science, 41, 143–153. DOI: 10.1016/s0376-7388(00)82397-2.

    Article  CAS  Google Scholar 

  • Wu, C. M., Gu, J. J., Wu, Y. H., Luo, J. Y., Xu, T. W., & Zhang, Y. P. (2012). Carboxylic acid type PVA-based hybrid membranes for alkali recovery using diffusion dialysis. Separation and Purification Technology, 92, 21–29. DOI: 10.1016/j.seppur.2012.03.014.

    Article  CAS  Google Scholar 

  • Xu, T. W., & Yang, W. H. (2001). Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes — static runs. Journal of Membrane Science, 183, 193–200. DOI: 10.1016/s0376-7388(00)00590-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Palatý.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatý, Z., Bendová, H. Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation. Chem. Pap. 69, 560–568 (2015). https://doi.org/10.1515/chempap-2015-0070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0070

Keywords

Navigation