Skip to main content
Log in

Efficient synthesis of glutaric acid from l-glutamic acid via diazoniation/hydrogenation sequence

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The practical synthetic preparation of glutaric acid has remained a major challenge to date. In the present study, glutaric acid was synthesised by way of one-pot diazoniation/hydrogenation of the readily available l-glutamic acid under aqueous conditions on a gram-scale with good yields. This is the first example of the deamination of the aliphatic primary amine via diazoniation and could afford a practical approach to the production of glutaric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R., & Kornblum, N. (1941). Stereochemistry of biphenyls. LI. Resolution of diphenic acids having many-membered bridges across the 5,5′-positions: A novel type of restricted rotation. Journal of the American Chemical Society, 63, 188–200. DOI: 10.1021/ja01846a044.

    Article  CAS  Google Scholar 

  • Antonelli, E., D’Aloisio, R., Gambaro, M., Fiorani, T., & Venturello, C. (1998). Efficient oxidative cleavage of olefins to carboxylic acids with hydrogen peroxide catalyzed by methyltrioctylammonium tetrakis(oxodiperoxotungsto)phosphate(3−) under two-phase conditions. Synthetic aspects and investigation of the reaction course. The Journal of Organic Chemistry, 63, 7190–7206. DOI: 10.1021/jo980481t.

    Article  CAS  Google Scholar 

  • Bacherikov, V. A., Wang, M. J., Cheng, S. Y., Chen, C. H., Chen, K. T., & Su, T. L. (2004). Ethyl acetate as a proreducing agent in an one-pot reductive deamination of nitroanilines. Bulletin of the Chemical Society of Japan, 77, 1027–1028. DOI: 10.1246/bcsj.77.1027.

    Article  CAS  Google Scholar 

  • Balaraman, E., Khaskin, E., Leitus, G., & Milstein, D. (2013). Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nature Chemistry, 5, 122–125. DOI: 10.1038/nchem.1536.

    Article  CAS  Google Scholar 

  • Baqi, Y., & Müller, C. E. (2012). Efficient and mild deamination procedure for 1-aminoanthraquinones yielding a diverse library of novel derivatives with potential biological activity. Tetrahedron Letters, 53, 6739–6742. DOI: 10.1016/j.tetlet.2012.09.011.

    Article  CAS  Google Scholar 

  • Besson, M., Gauthard, F., Horvath, B., & Gallezot, P. (2005). Catalytic oxidation with air of cyclohexanone to dicarboxylic acids on synthetic carbons. Effect of supported metals and solvents. The Journal of Physical Chemistry B, 109, 2461–2467. DOI: 10.1021/jp0459662.

    Article  CAS  Google Scholar 

  • Bigelow, L. A., Johnson, J. R., & Sandborn, L. T. (1926). m-Bromotoluene. Organic Syntheses, 6, 16–18. DOI: 10.15227/orgsyn.006.0016.

    Article  Google Scholar 

  • Bogert, M. T., & Mandelbaum, M. R. (1923). The action of sulfur upon para-toluidine in the presence of litharge. Thiopara-toluidine, its constitution and some new derivatives. Journal of the American Chemical Society, 45, 3045–3055. DOI: 10.1021/ja01665a034.

    Article  CAS  Google Scholar 

  • Brewster, R. Q., & Poje, J. A. (1939). Reduction of diazonium salts to hydrocarbons with alkaline formaldehyde. Journal of the American Chemical Society, 61, 2418–2419. DOI: 10.1021/ja01878a044.

    Article  CAS  Google Scholar 

  • Castellan, A., Bart, J. C. J., & Cavallaro, S. (1991). Industrial production and use of adipic acid. Catalysis Today, 9, 237–254. DOI: 10.1016/0920-5861(91)80049-f.

    Article  CAS  Google Scholar 

  • Che, C. M., Yip, W. P., & Yu, W. Y. (2006). Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide. Chemistry — An Asian Journal, 1, 453–458. DOI: 10.1002/asia.200600091.

    Article  CAS  Google Scholar 

  • Chen, H., Dai, W., Yang, X., Gao, R., Cao, Y., & Fan, K. (2006a). Green catalytic process for synthesis of glutaric acid by selective oxidation of cyclopentene. Shiyou Huagong/Petrochemical Technology, 35, 118–121. DOI: 10.3321/j.issn:1000-8144.2006.02.003. (in Chinese)

    CAS  Google Scholar 

  • Chen, H., Dai, W. L., Yang, X. L., Gao, R., Cao, Y., Li, H., & Fan, K. (2006b). Studies on the structural change of a reaction-controlled phase-transfer [π-C5H5NC16H33]3PO4 [WO3]4 catalyst during the selective oxidation of cyclopentene to glutaric acid with aqueous H2O2. Applied Catalysis A: General, 309, 62–69. DOI: 10.1016/j.apcata.2006.04.037.

    Article  CAS  Google Scholar 

  • Chen, H., Dai, W. L., Gao, R., Cao, Y., Li, H., & Fan, K. (2007). New green catalytic manufacture of glutaric acid from the oxidation of cyclopentane-1,2-diol with aqueous hydrogen peroxide. Applied Catalysis A: General, 328, 226–236. DOI: 10.1016/j.apcata.2007.06.021.

    Article  CAS  Google Scholar 

  • Choudary, B. M., Valli, V. L. K., & Prasad, A. D. (1991). A novel montmorillonite-KMnO4 system for the oxidation of alkenes under triphase conditions. Synthetic Communications, 21, 2007–2013. DOI: 10.1080/00397919108019806.

    Article  CAS  Google Scholar 

  • Chu, X., Zhu, Q., Dai, W. L., & Fan, K. (2012). Excellent catalytic performance of graphite oxide in the selective oxidation of glutaraldehyde by aqueous hydrogen peroxide. RSC Advances, 2, 7135–7139. DOI: 10.1039/c2ra21068a.

    Article  CAS  Google Scholar 

  • Clarke, H. T., & Taylor, E. R. (1923). m-Nitrotoluene. Organic Syntheses, 3, 91–92. DOI: 10.15227/orgsyn.003.0091.

    Article  Google Scholar 

  • Coleman, G. H., & Talbot, W. F. (1933). sym-Tribromobenzene. Organic Syntheses, 13, 96–99. DOI: 10.15227/orgsyn.013.0096.

    Article  CAS  Google Scholar 

  • DeTar, D. F., & Kosuge, T. (1958). Mechanisms of diazonium salt reactions. VI. The reactions of diazonium salts with alcohols under acidic conditions; evidence for hydride transfer. Journal of the American Chemical Society, 80, 6072–6079. DOI: 10.1021/ja01555a044.

    Article  CAS  Google Scholar 

  • Doldouras, G. A., & Kollonitsch, J. (1978). A direct, selective, and general method for reductive deamination of primary amines. Journal of the American Chemical Society, 100, 341–342. DOI: 10.1021/ja00469a088.

    Article  CAS  Google Scholar 

  • English, J., Jr., & Dayan, J. E. (1957). Glutaric acid and glutarimide [II. From dihydropyran]. Organic Syntheses, 37, 48–52. DOI: 10.15227/orgsyn.037.0047.

    Google Scholar 

  • Gao, R., Chen, H., Le, Y., Dai, W. L., & Fan, K. (2009). Highly active and selective Cs2.5H0.5PW12O40/SBA-15 composite material in the oxidation of cyclopentane-1,2-diol to glutaric acid by aqueous H2O2. Applied Catalysis A: General, 352, 61–65. DOI: 10.1016/j.apcata.2008.09.031.

    Article  CAS  Google Scholar 

  • Geoffroy, O. J., Morinelli, T. A., & Meier, G. P. (2001). Chemoselective one-pot reductive deamination of aryl amines. Tetrahedron Letters, 42, 5367–5369. DOI: 10.1016/s0040-4039(01)01027-9.

    Article  CAS  Google Scholar 

  • Golubev, N. S., Asfin, R. E., Smirnov, S.N., & Tolstoi, P. M. (2006). Study of hydrogen bonds of hypophosphorous acid by 1H, 2H, 31P, and 15N NMR spectroscopy under slow exchange conditions. Russian Journal of General Chemistry, 76, 915–924. DOI: 10.1134/s1070363206060119.

    Article  CAS  Google Scholar 

  • Griffith, W. P., Shoair, A. G., & Suriaatmaja, M. (2000). Ruthenium-catalysed cleavage of alkenes and alkynes to carboxylic acids. Synthetic Communications, 30, 3091–3095. DOI: 10.1080/00397910008086915.

    Article  CAS  Google Scholar 

  • Griffith, W. P., & Kwong, E. (2003). Alkene and alkyne oxidative cleavage catalyzed by RuO4 in environmentally acceptable solvents. Synthetic Communications, 33, 2945–2951. DOI: 10.1081/scc-120022466.

    Article  CAS  Google Scholar 

  • He, L., Qiu, G., Gao, Y., & Wu, J. (2014). Removal of amino groups from anilines through diazonium salt-based reactions. Organic & Biomolecular Chemistry, 12, 6965–6971. DOI: 10.1039/c4ob01286k.

    Article  CAS  Google Scholar 

  • Hendrickson, J. B. (1961). Reduction of diazonium borofluorides by sodium borohydrides. Journal of the American Chemical Society, 83, 1251–1251. DOI: 10.1021/ja01466a055.

    Article  Google Scholar 

  • Iwahama, T., Yoshino, Y., Keitoku, T., Sakaguchi, S., & Ishii, Y. (2000). Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species. The Journal of Organic Chemistry, 65, 6502–6507. DOI: 10.1021/jo000760s.

    Article  CAS  Google Scholar 

  • Johnson, R. W., Pollock, C. M., & Cantrell, R. R. (1993). Dicarboxylic acids. In J. I. Kroschwitz (Ed.), Kirk-Othmer encyclopedia of chemical technology (4th ed., Vol. 8, pp. 614–628). New York, NY, USA: Wiley.

    Google Scholar 

  • Kolitz, M, Cohen-Arazi, N, Hagag, I, Katzhendler, J, & Domb, A. J. (2009). Biodegradable polyesters derived from amino acids. Macromolecules, 42, 4520–4530. DOI: 10.1021/ma900464g.

    Article  CAS  Google Scholar 

  • KÖlker, S., Ahlemeyer, B., Krieglstein, J., & Hoffmann, G. F. (1999). 3-Hydroglutaric and glutaric acids are neurotoxic through NMDA receptors in vitro. Journal of Inherited Metabolic Disease, 22, 259–262. DOI: 10.1023/a:1005577920954.

    Google Scholar 

  • Kornblum, N. (1941). 3,3′-Dimethoxybiphenyl and 3,3′-dimethylbiphenyl. Organic Syntheses, 21, 30–35. DOI: 10.15227/orgsyn.021.0030.

    Article  CAS  Google Scholar 

  • Kornblum, N. (1944). Replacement of the aromatic primary amino group by hydrogen. In R. Adams (Ed.), Organic reactions (Vol. 2, pp. 262–340). New York, NY, USA: Wiley.

    Google Scholar 

  • Kornblum, N., & Iffland, D. C. (1949). The selective replacement of the aromatic primary amino group by hydrogen in aromatic-aliphatic diamines. Journal of the American Chemical Society, 71, 2137–2143. DOI: 10.1021/ja01174a064.

    Article  CAS  Google Scholar 

  • Kornblum, N., Cooper, G. D., & Taylor, J. E. (1950). The chemistry of diazo compounds. II. Evidence for a free radical chain mechanism in the reduction of diazonium salts by hypophosphorous acid. Journal of the American Chemical Society, 72, 3013–3021. DOI: 10.1021/ja01163a060.

    Article  CAS  Google Scholar 

  • Kornblum, N., Kelley, A. E., & Cooper, G. D. (1952). The chemistry of diazo compounds. III. The reduction of diazonium salts by phosphorous acid. Journal of the American Chemical Society, 74, 3074–3076. DOI: 10.1021/ja01132a036.

    Article  CAS  Google Scholar 

  • Lyalin, B. V., & Petrosyan, V. A. (2009). Electrosynthesis of glutaric acid and regularities of electrocatalytic oxidation of cycloalkanones at a NiOOH anode in aqueous NaOH. Russian Chemical Bulletin, International Edition, 58, 2426–2431. DOI: 10.1007/s11172-009-0339-1.

    Article  CAS  Google Scholar 

  • Marques, F. O., Hagen, M. E. K., Pederzolli, C. D., Sgaravatti, A. M., Durigon, K., Testa, C. G., Wannmacher, C. M. D., Wyse, A. T. S., Wajner, M., & Dutra-Filho, C. S. (2003). Glutaric acid induces oxidative stress in brain of young rats. Brain Research, 964, 153–158. DOI: 10.1016/s0006-8993(02)04118-5.

    Article  CAS  Google Scholar 

  • Marvel, C. S., & Tuley, W. F. (1925). Glutaric acid. Organic Syntheses, 5, 69–72. DOI: 10.15227/orgsyn.005.0069.

    Article  Google Scholar 

  • Meng, X. Y., & Cai, C. (2005). Deamination in ethyl acetate media. Huaxue Shiji/Chemical Reagents, 27, 625–626. DOI: 10.3969/j.issn.0258-3283.2005.10.018. (in Chinese)

    CAS  Google Scholar 

  • Mitsuhashi, H., Kawakami, T., & Suzuki, H. (2000). A mild one-pot deamination of aromatic amines bearing electron-withdrawing groups. Calcium hypophosphite as a dediazonation reagent in nonaqueous media. Tetrahedron Letters, 41, 5567–5569. DOI: 10.1016/s0040-4039(00)00883-2.

    Article  CAS  Google Scholar 

  • Mo, F., Dong, G., Zhang, Y., & Wang, J. (2013). Recent applications of arene diazonium salts in organic synthesis. Organic & Biomolecular Chemistry, 11, 1582–1593. DOI: 10.1039/c3ob27366k.

    Article  CAS  Google Scholar 

  • Muühlhausen, C., Burckhardt, B. C., Hagos, Y., Burckhardt, G., Keyser, B., Lukacs, Z., Ullrich, K., & Braulke, T. (2008). Membrane translocation of glutaric acid and its derivatives. Journal of Inherited Metabolic Disease, 31, 188–193. DOI: 10.1007/s10545-008-0825-x.

    Article  Google Scholar 

  • Nickon, A., & Hill, A. S. (1964). A direct method for reductive deamination of aliphatic amines. Journal of the American Chemical Society, 86, 1152–1158. DOI: 10.1021/ja01060a040.

    Article  CAS  Google Scholar 

  • Orita, H., Hayakawa, T., & Takehira, K. (1986). Oxidation of cyclopentene by RuCl3—NaOCl catalyst. Bulletin of the Chemical Society of Japan, 59, 2637–2638. DOI: 10.1246/bcsj.59.2637.

    Article  CAS  Google Scholar 

  • Paris, G., Berlinguet, L., & Gaudry, R. (1957). Glutaric acid and glutarimide [1. Fromγ-butyrolactone]. Organic Syntheses, 37, 47–48. DOI: 10.15227/orgsyn.037.0047.

    Article  CAS  Google Scholar 

  • Pazo-Llorente, R., Maskill, H., Bravo-Diaz, C., & Gonzalez-Romero, E. (2006). Dediazaoniation of 4-nitrobenzenediazonium ions in acidic MeOH/H2O mixtures: Role of acidity and MeOH concentration on the formation of transient diazo ethers that initiate hemolytic dediazoniation. European Journal of Organic Chemistry, 2006, 2201–2209. DOI: 10.1002/ejoc.200500946.

    Article  Google Scholar 

  • Porciúncula, L. O., Dal-Pizzol, A., Jr., Coitinho, A. S., Emanuelli, T., Souza, D. O., & Wajner, M. (2000). Inhibition of synaptosomal [3H]glutamate uptake and [3H]glutamate binding to plasma membranes from brain of young rats by glutaric acid in vitro. Journal of the Neurological Sciences, 173, 93–96. DOI: 10.1016/s0022-510X(99)00307-x.

    Article  Google Scholar 

  • Rieker, A., Niederer, P., & Leibfritz, D. (1969). Chemisch induzierte dynamische kernpolarisation im system phenyldiazoniumtetrafluoroborat/NaBH4 nachweis des arylradikals bei reaktionen vom typ der gomberg-arylierung. Tetrahedron Letters, 10, 4287–4290. DOI: 10.1016/s0040-4039(01)886767. (in German)

    Article  Google Scholar 

  • Robison, M. M., & Robison, B. L. (1956). 2,4,6-Tribromobenzoic acid. Organic Syntheses, 36, 94–97. DOI: 10.15227/orgsyn.036.0094.

    Article  CAS  Google Scholar 

  • Roe, A., & Graham, J. R. (1952). Replacement of the primary aromatic amino group by hydrogen using diazonium fluoborates. Journal of the American Chemical Society, 74, 6297–6298. DOI: 10.1021/ja01144a523.

    Article  CAS  Google Scholar 

  • Romanova, N. V., & Demidenko, N. V. (1975). Hypophosphorous acid and its salts. Russian Chemical Reviews, 44, 1036–1047. DOI: 10.1070/rc1975v044n12abeh002547.

    Article  Google Scholar 

  • Rosa, R. B., Dalcin, K. B., Schmidt, A. L., Gerhardt, D., Ribeiro, C. A. J., Ferreira, G. C., Schuck, P. F., Wyse, A. T. S., Porciúncula, L. O., Wofchuk, S., Salbego, C. G., Souza, D. O., & Wajner, M. (2007). Evidence that glutaric acid reduces glutamate uptake by cerebral cortex of infant rats. Life Sciences, 81, 1668–1676. DOI: 10.1016/j.lfs.2007.09.021.

    Article  CAS  Google Scholar 

  • Saedi, Z., Tangestaninejad, S., Moghadam, M., Mirkhani, V., & Mohammadpoor-Baltork, I. (2012a). MIL-101 metal-organic framework: A highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. Catalysis Communications, 17, 18–22. DOI: 10.1016/j.catcom.2011.10.005.

    Article  CAS  Google Scholar 

  • Saedi, Z., Tangestaninejad, S., Moghadam, M., Mirkhani, V., & Mohammadpoor-Baltork, I. (2012b). The effect fo encapsulated Zn-POM on the catalytic activity of MIL-101 in the oxidation of alkenes with hydrogen peroxide. Journal of Coordination Chemistry, 65, 463–473. DOI: 10.1080/00958972.2011.648929.

    Article  CAS  Google Scholar 

  • Shapiro, R., Cohen, B. I., & Servis, R. E. (1970). Specific deamination of RNA by sodium bisulphite. Nature, 227, 1047–1048. DOI: 10.1038/2271047a0.

    Article  CAS  Google Scholar 

  • Shoair, A. G. F., & Mohamed, R. H. (2006). Improved procedure for ruthenium-catalyzed oxidative cleavage of alkenes with IO(OH)5. Synthetic Communications, 36, 59–64. DOI: 10.1080/00397910500328944.

    Article  CAS  Google Scholar 

  • Shono, T., Matsumura, Y., & Tsubata, K. (1979). One of the simplest methods for the replacement of diazonium groups by hydrogen or deuterium. Chemistry Letters, 8, 1051–1054. DOI: 10.1246/cl.1979.1051.

    Article  Google Scholar 

  • Silva, C. G., Silva, A. R., Ruschel, C., Helegda, C., Wyse, A. T. S., Wannmacher, C. M. D., Dutra-Filho, C. S., & Wajner, M. (2000). Inhibition of energy production in vitro by glutaric acid in cerebral cortex of young rats. Metabolic Brain Disease, 15, 123–131. DOI: 10.1007/bf02679979.

    Article  CAS  Google Scholar 

  • Skrunts, L. K., Kiprianova, L. A., Levit, A. F., Gragerov, I. P., Gordina, T. A., & Mkhitarov, R. A. (1983). Kinetics and mechanism of the reduction of diazonium salts by hypophosphite. Theoretical and Experimental Chemistry, 19, 98–101. DOI: 10.1007/bf00516867.

    Article  Google Scholar 

  • Smith, A. B. III, & Scarborough, R. M., Jr. (1980). Ruthenium tetroxide oxidation of simple ethers: A systematic study. Synthetic Communications, 10, 205–211. DOI: 10.1080/00397918008064223.

    Article  CAS  Google Scholar 

  • Tachikawa, Y., Cui, L., Matsusaki, Y., Tada, N., Miura, T., & Itoh, A. (2013). Aerobic photooxidative cleavage of 1,3-diketones to carboxylic acids using 2-chloroanthraquinone. Tetrahedron Letters, 54, 6218–6221. DOI: 10.1016/j.tetlet.2013.09.015.

    Article  CAS  Google Scholar 

  • Travis, B. R., Narayan, R. S., & Borhan, B. (2002). Osmium tetroxide-promoted catalytic oxidative cleavage of olefins: An organometallic ozonolysis. Journal of the American Chemical Society, 124, 3824–3825. DOI: 10.1021/ja017295g.

    Article  CAS  Google Scholar 

  • Tullo, A. (2002). Glutaric acid debuts. Chemical & Engineering News, 80, 13–13. DOI: 10.1021/cen-v080n016.p013.

    Google Scholar 

  • Wallingford, V. H., & Krueger, P. A. (1939). m-Iodobenzoic acid. Organic Syntheses, 19, 57–59. DOI: 10.15227/orgsyn.019.0057.

    Article  CAS  Google Scholar 

  • Wang, W. J., & Dai, Q. H. (2002). Carbon-carbon double bond cleavage by silica-supported potassium permanganate under conditions free of organic solvent. Chinese Journal of Synthetic Chemistry, 10, 422–424. DOI: 10.3969/j.issn.1005-1511.2002.05.010.

    CAS  Google Scholar 

  • Wassmundt, F. W., & Kiesman, W. F. (1997). Detection of aryl radicals in hydrodediazoniations. The Journal of Organic Chemistry, 62, 8304–8308. DOI: 10.1021/jo962128y.

    Article  CAS  Google Scholar 

  • Yuan, Y., Ji, X., & Zhao, D. (2010). Efficient oxidative cleavage of 1,3-dicarbonyl derivatives with hydrogen peroxide catalyzed by quaternary ammounium iodide. European Journal of Organic Chemistry, 2010, 5274–5278. DOI: 10.1002/ejoc.201000666.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-Li Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Rao, MY., Cheng, ZJ. et al. Efficient synthesis of glutaric acid from l-glutamic acid via diazoniation/hydrogenation sequence. Chem. Pap. 69, 716–721 (2015). https://doi.org/10.1515/chempap-2015-0067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0067

Keywords

Navigation