Advertisement

Chemical Papers

, Volume 69, Issue 4, pp 586–595 | Cite as

Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites

  • Davood Habibi
  • Atefeh Shamsian
  • Davood Nematollahi
Original Paper

Abstract

An efficient ionic liquid with both Brønsted acidic and Lewis basic sites, namely 1,4-dimethyl-1-(4-sulphobutyl)piperazinium hydrogen sulphate (IL1), was synthesised and characterised. IL1 is a “green”, homogeneous and reusable catalyst for: i) the synthesis of pyranopyrazoles (Va-Vj)and benzopyrans (VIa-VIj and VIIa-VIIf) at ambient temperature under solvent-free conditions and ii) the synthesis of amino-2-chromenes (VIIIa-VIIIi and IXa-IXi) and dihyropyrano[c]chromenes (Xa-Xi) at 80 °C under solvent-free conditions. The reactions were rapid with excellent product yields. In addition, the double Brønsted acid, 1,4-dimethyl-1,4-bis(4-sulphobutyl)piperazinium hydrogen sulphate (IL2), was prepared to evaluate the cooperation efficiency of their Brønsted acidic and Lewis basic sites as compared with the double Brønsted acidic sites in IL1.

Keywords

ionic liquid synthesis pyranopyrazoles benzopyrans amino-2-chromenes dihydropyrano[c]chromenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al’-Assar, F., Zelenin, K. N., Lesiovskaya, E. E., Bezhan, I. P., & Chakchir, B. A. (2002). Synthesis and pharmacological activity of 1-hydroxy-1-amino-, and 1-hydrazino-substituted 2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones. Pharmaceutical Chemistry Journal, 36, 598–603. DOI:  10.1023/a:1022665331722.CrossRefGoogle Scholar
  2. Al-Haiza, M. A., Mostafa, M. S., & El-Kady, M. Y. (2003). Synthesis and biological evaluation of some new coumarin derivatives. Molecules, 8, 275–286. DOI:  10.3390/80200275.CrossRefGoogle Scholar
  3. Balalaie, S., Bararjanian, M., Amani, A. M., & Movassagh, B. (2006). (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synlett, 2006, 263–266. DOI:  10.1055/s-2006-926227.CrossRefGoogle Scholar
  4. Ballini, R., Bigi, F., Conforti, M. L., De Santis, D., Maggi, R., Oppici, G., & Sartori, G. (2000). Multicomponent reactions under clay catalysis. Catalysis Today, 60, 305–309. DOI:  10.1016/s0920-5861(00)00347-3.CrossRefGoogle Scholar
  5. Banerjee, S., & Sereda, G. (2009). One-step, three-component synthesis of highly substituted pyridines using silica nanoparticleas reusablecatalyst. Tetrahedron Letters, 50, 6959–6962. DOI:  10.1016/j.tetlet.2009.09.137.CrossRefGoogle Scholar
  6. Banerjee, S., Horn, A., Khatri, H., & Sereda, G. (2011). A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Letters, 52, 1878–1881. DOI:  10.1016/j.tetlet.2011.02.031.CrossRefGoogle Scholar
  7. Bartók, M., Felföldi, K., Szöllösi, G., & Bartók, T. (1999). Rigid cinchona conformers in enantioselective catalytic reactions: new cinchona-modified platinum catalysts in the Orito reaction. Catalysis Letters, 61, 1–5. DOI:  10.1023/a:1019008519015.CrossRefGoogle Scholar
  8. Bonsignore, L., Loy, G., Secci, D., & Calignano, A. (1993). Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives. European Journal of Medicinal Chemistry, 28, 517–520. DOI:  10.1016/0223-5234(93)90020-f.CrossRefGoogle Scholar
  9. Bräse, S., Gil, C., & Knepper, K. (2002). The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles. Bioorganic & Medicinal Chemistry, 10, 2415–2437. DOI:  10.1016/s0968-0896(02)00025-1.CrossRefGoogle Scholar
  10. Chen, L., Li, Y. Q., Huang, X. J., & Zheng, W. J. (2009). N, N-dimethylamino-functionalized basic ionic liquid catalyzed one-pot multicomponent reaction for the synthesis of 4H-benzo[b]pyran derivatives under solvent-free condition. Heteroatom Chemistry, 20, 91–94. DOI:  10.1002/hc.20516.CrossRefGoogle Scholar
  11. Cole, A. C., Jensen, J. L., Ntai, I., Tran, K. L. T., Weaver, K. J., Forbes, D. C., & Davis, J. H., Jr. (2002). Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. Journal of the American Chemical Society, 124, 5962–5963. DOI:  10.1021/ja026290w.CrossRefGoogle Scholar
  12. Darbarwar, M., & Sundaramurthy, V. (1982). Synthesis of coumarins with 3:4-fused ring systems and their physiological activity. Synthesis, 1982, 337–388. DOI:  10.1055/s-1982-29806.CrossRefGoogle Scholar
  13. Davis, J. H., Jr. (2004). Task-specific ionic liquids. Chemistry Letters, 33, 1072–1077. DOI:  10.1246/cl.2004.1072.CrossRefGoogle Scholar
  14. Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI:  10.1021/cr010338r.CrossRefGoogle Scholar
  15. Fang, D., Zhou, X. L., Ye, Z. W., & Liu, Z. L. (2006). Brønsted acidic ionic liquids and their use as dual solvent-catalysts for Fischer esterifications. Industrial & Engineering Chemistry Research, 45, 7982–7984. DOI:  10.1021/ie060365d.CrossRefGoogle Scholar
  16. Fang, D., Zhang, H. B., & Liu, Z. L. (2010). Synthesis of 4H-benzopyrans catalyzed by acyclic acidic ionic liquids in aqueous media. Journal of Heterocyclic Chemistry, 47, 63–67. DOI:  10.1002/jhet.254.Google Scholar
  17. Firouzabadi, H., Iranpoor, N., Jafarpour, M., & Ghaderi, A. (2006). ZrOCl2·8H2O/silica gel as a new efficient and a highly water-tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 253, 249–251. DOI:  10.1016/j.molcata.2006.03.043.CrossRefGoogle Scholar
  18. Ganem, B. (2009). Strategies for innovation in multicomponent reaction design. Accounts of Chemical Research, 42, 463–472. DOI:  10.1021/ar800214s.CrossRefGoogle Scholar
  19. Gupta, N., Sonu, Kad, G. L., & Singh, J. (2007). Acidic ionic liquid [bmim]HSO4: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection. Catalysis Communications, 8, 1323–1328. DOI:  10.1016/j.catcom.2006.11.030.CrossRefGoogle Scholar
  20. Habibi, D., Mahmoudi, N., & Marvi, O. (2007). Green procedure for the synthesis of phthalazino[2,3-6]phthalazine-5,7,12,14-tetraones. Synthetic Communications, 37, 3165–3171. DOI:  10.1080/00397910701545247.CrossRefGoogle Scholar
  21. Habibi, D., & Shamsian, A. (2013). An efficient one-pot synthesis ofdihydropyrano[c] chromenes and amino-2-chromenes under solvent-free conditions. Journal of Chemical Research, 37, 253–255. DOI:  10.3184/174751913x13639572643562.CrossRefGoogle Scholar
  22. Habibi, D., Zolfigol, M. A., & Safaee, M. (2013). Synthesis of 1,4-dihydropyridines bearing a carbamate moiety on the 4-position. Journal of Chemistry, 2013, 495982. DOI:  10.1155/2013/495982.Google Scholar
  23. Hafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A., & El-Taweel, F. M. A. A. (1987). Nitriles in heterocyclic synthesis: Novel synthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycles, 26, 903–907. DOI:  10.3987/r-1987-04-0903.CrossRefGoogle Scholar
  24. Han, F., Yang, L., Li, Z., & Xia, C. (2012). Sulfonic acid-functionalized ionic liquids as metal-free, efficient and reusable catalysts for direct amination of alcohols. Advanced Synthesis & Catalysis, 354, 1052–1060. DOI:  10.1002/adsc.201100886.CrossRefGoogle Scholar
  25. Hasaninejad, A., Shekouhy, M., Golzar, N., Zare, A., & Doroodmand, M. M. (2011). Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Applied Catalysis A: General, 402, 11–22. DOI:  10.1016/j.apcata.2011.04.012.CrossRefGoogle Scholar
  26. Heravi, M. M., Jani, B. A., Derikvand, F., Bamoharram, F. F., & Oskooie, H. A. (2008). Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives in the presence of H6P2W18O62 · 18H2O as a green and recyclable catalyst. Catalysis Communications, 10, 272–275. DOI:  10.1016/j.catcom.2008.08.023.CrossRefGoogle Scholar
  27. Jiménez-González, C., & Constable, D. J. C. (2011). Green chemistry and engineering: A practical design approach. Hoboken, NJ, USA: Wiley.Google Scholar
  28. Kamal, A., & Chouhan, G. (2004) Investigations towards the chemoselective thioacetalization of carbonyl compounds by using ionic liquid [bmim]Br as a recyclable catalytic medium. Advanced Synthesis & Catalysis, 346, 579–582. DOI:  10.1002/adsc.200303171.CrossRefGoogle Scholar
  29. Khurana, J. M., & Kumar, S. (2009). Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Letters, 50, 4125–4127. DOI:  10.1016/j.tetlet.2009.04.125.CrossRefGoogle Scholar
  30. Kiyani, H., & Ghorbani, F. (2014). Potassium phthalimide-catalysed one-pot multi-component reaction for efficient synthesis of amino-benzochromenes in aqueous media. Chemical Papers, 68, 1104–1112. DOI:  10.2478/s11696-014-0554-6.CrossRefGoogle Scholar
  31. Konkoy, C. S., Fick, D. B., Cai, S. X., Lan, N. C., & Keana, J. F. W. (2000). WO Patent No. 2000075123 (A1). Geneva, Switzerland: World Intellectual Property Organization.Google Scholar
  32. Liu, H. F., Zeng, F. X., Deng, L., Liao, B., Pang, H., & Guo, Q. X. (2013). Brønsted acidic ionic liquids catalyze the high-yield production of diphenolic acid/esters from renewable levulinic acid. Green Chemistry, 15, 81–84. DOI:  10.1039/c2gc36630d.CrossRefGoogle Scholar
  33. Luo, H., Xue, K., Fan, W., Li, C., Nan, G., & Li, Z. (2014). Hydrolysis of vegetable oils to fatty acids using Brønsted acidic ionic liquids as catalysts. Industrial & Engineering Chemistry Research, 53, 11653–11658. DOI:  10.1021/ie501524z.CrossRefGoogle Scholar
  34. Maggi, R., Ballini, R., Sartori, G., & Sartorio, R. (2004). Basic alumina catalysed synthesis of substituted 2-amino-2-chromenes via three-component reaction. Tetrahedron Letters, 45, 2297–2299. DOI:  10.1016/j.tetlet.2004.01.115.CrossRefGoogle Scholar
  35. Mehrabi, H., & Abusaidi, H. (2010). Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. Journal of the Iranian Chemical Society, 7, 890–894. DOI:  10.1007/bf03246084.CrossRefGoogle Scholar
  36. Mehrabi, H., & Kazemi-Mireki, M. (2011). CuO nanoparticles: An efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes. Chinese Chemical Letters, 22, 1419–1422. DOI:  10.1016/j.cclet.2011.06.003.CrossRefGoogle Scholar
  37. Niknam, K., Borazjani, N., Rashidian, R., & Jamali, A. (2013). Silica-bonded N-propylpiperazine sodium n-propionate as recyclable catalyst for synthesis of 4H-pyran derivatives. Chinese Journal of Catalysis, 34, 2245–2254. DOI:  10.1016/s1872-2067(12)60693-7.CrossRefGoogle Scholar
  38. Ranu, B. C., Banerjee, S., & Roy, S. (2008). A task specific basic ionic liquid, [bmIm]OH-promoted efficient, green and one-pot synthesis of tetrahydrobenzo[b]pyran derivatives. Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry, 47, 1108–1112.Google Scholar
  39. Salvi, P. P., Mandhare, A. M., Sartape, A. S., Pawar, D. K., Han, S. H., & Kolekar, S. S. (2011). An efficient protocol for synthesis of tetrahydrobenzo[b]pyrans using amino functionalized ionic liquid. Comptes Rendus Chimie, 14, 878–882. DOI:  10.1016/j.crci.2011.02.007.CrossRefGoogle Scholar
  40. Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 2001, 2399–2407. DOI:  10.1039/b107270f.CrossRefGoogle Scholar
  41. Singh, K., Singh, J., & Singh, H. (1996). A synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles. Tetrahedron, 52, 14273–14280. DOI:  10.1016/0040-4020(96)00879-4.CrossRefGoogle Scholar
  42. Sugimura, R., Qiao, K., Tomida, D., & Yokoyama, C. (2007). Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation. Catalysis Communications, 8, 770–772. DOI:  10.1016/j.catcom.2006.08.049.CrossRefGoogle Scholar
  43. Wang, X. S., Shi, D. Q., Tu, S. J., & Yao, C. S. (2003). A convenient synthesis of 5-oxo-5,6,7,8-tetrahydro-4H-benzo[b]-pyran derivatives catalyzed by KF-alumina. Synthetic Communications, 33, 119–126. DOI:  10.1081/scc-120015567.CrossRefGoogle Scholar
  44. Wang, W., Shao, L., Cheng, W., Yang, J., & He, M. (2008). Brønsted acidic ionic liquids as novel catalysts for Prins reaction. Catalysis Communications, 9, 337–341. DOI:  10.1016/j.catcom.2007.07.006.CrossRefGoogle Scholar
  45. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI:  10.1021/cr980032t.CrossRefGoogle Scholar
  46. Wu, H. H., Yang, F., Cui, P., Tang, J., & He, M. Y. (2004). An efficient procedure for protection of carbonyls in Brønsted acidic ionic liquid [Hmim]BF4. Tetrahedron Letters, 45, 4963–4965. DOI:  10.1016/j.tetlet.2004.04.138.CrossRefGoogle Scholar
  47. Yokoi, T., Kubota, Y., & Tatsumi, T. (2012). Amino-functionalized mesoporous silica as base catalyst and adsorbent. Applied Catalysis A: General, 421, 14–37. DOI:  10.1016/j.apcata.2012.02.004.CrossRefGoogle Scholar
  48. Zheng, J., & Li, Y. (2011). Basic ionic liquid-catalyzed multicomponent synthesis of tetrahydrobenzo[b]pyrans and pyrano[c]chromenes. Mendeleev Communications, 21, 280–281. DOI:  10.1016/j.mencom.2011.09.017.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  • Davood Habibi
    • 1
  • Atefeh Shamsian
    • 1
  • Davood Nematollahi
    • 1
  1. 1.Department of Organic Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations