Skip to main content
Log in

A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two easily-prepared pyridine-based derivatives of (Z)-2-(4-amino-phenyl)-3-(pyridine-4-yl)acrylonitrile (I)and (Z)-2-phenyl-3-(pyridin-4-yl)acrylonitrile (II) were designed, synthesised and characterised. Due to the formation of a complex with Hg2+, hence leading to an enhanced ICT effect, I exhibits a visible colour change from light yellow to orange, rendering it suitable for use as a naked-eye sensor for rapid detection of Hg2+ in an aqueous ethanol solution. When mixed with Hg2+, I interacts with Hg2+ in a2:1 (Y1-Hg2+) stoichiometry via a coordination bond with an association constant of 7.7 × 108 M−2 (R2 = 0.96). The present probe I exhibits excellent reproducibility, reversibility, sensitivity and selectivity with the presence of low concentration of Hg2+ (1.74 × 10−10 M).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aït-Haddou, H., Wiskur, S., Lynch, V., & Anslyn, E. V. (2001). Achieving large color changes in response to the presence of amino acids: A molecular sensing ensemble with selectivity for aspartate. Journal of the American Chemical Society, 123, 11296–11297. DOI: 10.1021/ja011905v.

    Article  Google Scholar 

  • Azevedo-Pereira, H. M. V. S., & Soares, A. M. V. M. (2010). Effects of mercury on growth, emergence and behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Archives of Environmental Contamination and Toxicology, 59, 216–224. DOI: 10.1007/s00244-010-9482-9.

    Article  CAS  Google Scholar 

  • Bera, K., Das, A. K., Nag, M., & Basak, S. (2014). Development of a rhodamine-rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae. Analytical Chemistry, 86, 2740–2746. DOI: 10.1021/ac404160v.

    Article  CAS  Google Scholar 

  • Carter, K. K., Rycenga, H. B., & McNeil, A. J. (2014). Improving Hg-triggered gelation via structural modifications. Langmuir, 30, 3522–3527. DOI: 10.1021/la404567b.

    Article  CAS  Google Scholar 

  • Chemnasiri, W., & Hernandez, F. E. (2012). Gold nanorod-based mercury sensor using functionalized glass substrates. Sensors and Actuators B: Chemical, 173, 322–328. DOI: 10.1016/j.snb.2012.07.002.

    Article  CAS  Google Scholar 

  • Chen, Q. Y., & Chen, C. F. (2005). A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Letters, 46, 165–168. DOI: 10.1016/j.tetlet.2004.10.169.

    Article  Google Scholar 

  • Chen, H., Ji, X., Zhang, S., Shi, W., Wei, M., Evans, D. G., & Duan, X. (2013). A ratiometric fluorescence chemosenser for Hg2+ based on primuline and layered double hydroxide ultrafilms. Sensors and Actuators B: Chemical, 178, 155–162. DOI: 10.1016/j.snb.2012.12.075.

    Article  CAS  Google Scholar 

  • Cheng, X. H., Li, Q. Q., Li, C. G., & Li, Z. (2011). Azobenzene-based colorimetric chemosensors for rapid naked-eye detection of mercury(II). Chemistry — A European Journal, 17, 7276–7281. DOI: 10.1002/chem.201003275.

    Article  CAS  Google Scholar 

  • Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Palomares, E., Durrant, J. R., Vilar, R., Gratzel, M., & Nazeeruddin, M. K. (2005). Reversible colorimetric probes for mercury sensing. Journal of the American Chemical Society, 127, 12351–12356. DOI: 10.1021/ja0517724.

    Article  CAS  Google Scholar 

  • Dalapati, S., Paul, B. K., Jana, S., & Guchhait, N. (2011). Highly selective and sensitive fluorescence reporter for toxic Hg(II) ion by a synthetic symmetrical azine derivative. Sensors and Actuators B: Chemical, 157, 615–620. DOI: 10.1016/j.snb.2011.05.034.

    Article  CAS  Google Scholar 

  • Farhadi, K., Forough, M., Molaei, R., Hajizadeh, S., & Rafipour, A. (2012). Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors and Actuators B: Chemical, 161, 880–885. DOI: 10.1016/j.snb.2011.11.052.

    Article  CAS  Google Scholar 

  • Goswami, S., Das, S., & Aich, K. (2013). An ICT based highly selective and sensitive sulfur-free sensor for naked eye as well as fluorogenic detection of Hg2+ in mixed aqueous media. Tetrahedron Letters, 54, 4620–4623. DOI: 10.1016/j.tetlet.2013.06.035.

    Article  CAS  Google Scholar 

  • Gundacker, C., Gencik, M., & Hengstschläger, M. (2010). The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: Mercury and lead. Mutation Research/Reviews in Mutation Research, 705, 130–140. DOI: 10.1016/j.mrrev.2010.06.003.

    Article  CAS  Google Scholar 

  • Gunnlaugsson, T., Kruger, P. E., Jensen, P., Tierney, J., Ali, H. D. P., & Hussey, G. M. (2005). Colorimetric “naked eye” sensing of anions in aqueous solution. The Journal of Organic Chemistry, 70, 10875–10878. DOI: 10.1021/jo0520487.

    Article  CAS  Google Scholar 

  • Guo, Z. Q., Zhu, W. H., Zhu, M. M., Wu, X. M., & Tian, H. (2010). Near-infrared cell-permeable Hg2+-selective ratio-metric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines. Chemistry — A European Journal, 16, 14424–14432. DOI: 10.1002/chem.201001769.

    Article  CAS  Google Scholar 

  • Hansen, S., Nieboer, E., Sandanger, T. M., Wilsgaard, T., Thomassen, Y., Veyhe, A. S., & Odland, J. Ø. (2011). Changes in maternal blood concentrations of selected essential and toxic elements during and after pregnancy. Journal of Environmental Monitoring, 13, 2143–2152. DOI: 10.1039/c1em10051c.

    Article  CAS  Google Scholar 

  • Hu, S. Z., & Chen, C. F. (2011). Hg2+ recognition by triptycene-derived heteracalixarenes: Selectivity tuned by bridging heteroatoms and macrocyclic cavity. Organic & Biomolecular Chemistry, 9, 5838–5844. DOI: 10.1039/c1ob05515a.

    Article  CAS  Google Scholar 

  • Huang, J. H., Gao, X., Jia, J. J., Kim, J. K., & Li, Z. G. (2014). Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Analytical Chemistry, 86, 3209–3215. DOI: 10.1021/ac500192r.

    Article  CAS  Google Scholar 

  • Jenssen, M. T. S., Brantsæter, A. L., Haugen, M., Meltzer, H. M., Larssen, T., Kvalem, H. E., Birgisdottir, B. E., Thomassen, Y., Ellingsen, D., Alexander, J., & Knutsen, H. K. (2012). Dietary mercury exposure in a population with a wide range of fish consumption — self-capture of fish and regional differences are important determinants of mercury in blood. Science of The Total Environment, 439, 220–229. DOI: 10.1016/j.scitotenv.2012.09.024.

    Article  CAS  Google Scholar 

  • Kim, H. J., Park, J. E., Choi, M. G., Ahn, S. D., & Chang, S. K. (2010). Selective chromogenic and fluorogenic signalling of Hg2+ ions using a fluorescein-coumarin conjugate. Dyes and Pigments, 84, 54–58. DOI: 10.1016/j.dyepig.2009.06.009.

    Article  CAS  Google Scholar 

  • Kim, H. N., Ren, W. X., Kim, J. S., & Yoon, J. Y. (2012). Fluorescent and colorimetric sensors for detection of lead, cadmium and mercury ions. Chemical Society Reviews, 41, 3210–3244. DOI: 10.1039/c1cs15245a.

    Article  CAS  Google Scholar 

  • Koenig, S., Solé, M., Fernández-Gómez, C., & Díez, S. (2013). New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications. Science of The Total Environment, 442, 329–335. DOI: 10.1016/j.scitotenv.2012.10.036.

    Article  CAS  Google Scholar 

  • Lee, M. H., Cho, B. K., Yoon, J. Y., & Kim, J. S. (2007). Selectively chemodosimetric detection of Hg(II) in aqueous media. Organic Letters, 9, 4515–4518. DOI: 10.1021/ol7020115.

    Article  CAS  Google Scholar 

  • Li, X. H., Wu, Y. Q., Liu, Y., Zou, X. M., Yao, L. M., Li, F. Y., & Feng, W. (2014). Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water. Nanoscale, 6, 1020–1028. DOI: 10.1039/c3nr05195a.

    Article  CAS  Google Scholar 

  • Liang, Z. Q., Wang, C. X., Yang, J. X., Gao, H. W., Tian, Y. P., Tao, X. T., & Jiang, M. H. (2007). A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II) and iron(III) ions in water. New Journal of Chemistry, 31, 906–910. DOI: 10.1039/b701201m.

    Article  CAS  Google Scholar 

  • Lu, F. N., Yamamura, M., & Nabeshima, T. (2013). A highly selective and sensitive ratiometric chemodosimeter for Hg2+ ions based on an iridium(III) complex via thioacetal deprotection reaction. Dalton Transactions, 42, 12093–12100. DOI: 10.1039/c3dt50807b.

    Article  CAS  Google Scholar 

  • Madhu, S., Sharma, D. K., Basu, S. K., Jadhav, S., Chowdhury, A., & Ravikanth, M. (2013). Sensing Hg(II) in vitro and in vivo using a benzimidazole substituted BODIPY. Inorganic Chemistry, 52, 11136–11145. DOI: 10.1021/ic401365x.

    Article  CAS  Google Scholar 

  • Mei, Q. B., Wang, L. X., Tian, B., Yan, F., Zhang, B., Huang, W., & Tong, B. H. (2012). A highly selective and naked-eye sensor for Hg2+ based on quinazoline-4(3H)-thione. New Journal of Chemistry, 36, 1879–1883. DOI: 10.1039/c2nj40400a.

    Article  CAS  Google Scholar 

  • Misra, A., & Shahid, M. (2010). Chromo and fluorogenic properties of some azo-phenol derivatives and recognition of Hg2+ ion in aqueous medium by enhanced fluorescence. The Journal of Physical Chemistry C, 114, 16726–16739. DOI: 10.1021/jp1049974.

    Article  CAS  Google Scholar 

  • Ren, W., Zhu, C. Z., & Wang, E. K. (2012). Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale, 4, 5902–5909. DOI: 10.1039/c2nr31410j.

    Article  CAS  Google Scholar 

  • Shafeekh, K. M., Rahim, M. K. A., Basheer, M. C., Suresh, C. H., & Das, S. (2013). Highly selective and sensitive colourimetric detection of Hg2+ ions by unsymmetrical squaraine dyes. Dyes and Pigments, 96, 714–721. DOI: 10.1016/j.dyepig.2012.11.013.

    Article  CAS  Google Scholar 

  • Shellaiah, M., Wu, Y. H., Singh, A., Ramakrishnam Raju, M. V., & Lin, H. C. (2013). Novel pyrene- and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. Journal of Materials Chemistry A, 1, 1310–1318. DOI: 10.1039/c2ta00574c.

    Article  CAS  Google Scholar 

  • Sheng, R. L., Wang, P. F., Liu, W. M., Wu, X. H., & Wu, S. K. (2008). A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative. Sensors and Actuators B: Chemical, 128, 507–511. DOI: 10.1016/j.snb.2007.07.069.

    Article  CAS  Google Scholar 

  • Thirupathi, P., Saritha (née Gudelli), P., & Lee, K. H. (2014). Ratiometric fluorescence chemosensor based on tyrosine derivatives for monitoring mercury ions in aqueous solutions. Organic & Biomolecular Chemistry, 12, 7100–7109. DOI: 10.1039/c4ob01044b.

    Article  CAS  Google Scholar 

  • Tian, M. Q., & Ihmels, H. (2011). Selective colorimetric detection of Hg2+ and Mg2+ with crown ether substituted N-aryl-9-aminobenzo[b]quinolizinium derivatives. European Journal of Organic Chemistry, 2011, 4145–4153. DOI: 10.1002/ejoc.201100329.

    Article  CAS  Google Scholar 

  • Wang, K., Yang, L. X., Zhao, C., & Ma, H. M. (2013). 4-(8-Quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a newcolorimetric probe for rapid and visual detection of Hg2+. Spectrochimica Acta Part A, 105, 29–33. DOI: 10.1016/j.saa.2012.11.114.

    Article  CAS  Google Scholar 

  • Wei, T. B., Li, J. J., Bai, C. B., Lin, Q., Yao, H., Xie, Y.Q., & Zhang, Y. M. (2013). A highly selective colorimetric sensor for Hg2+ based on a copper(II) complex ofthiosemicarbazone in aqueous solutions. Science China Chemistry, 56, 923–927. DOI: 10.1007/s11426-013-4863-3.

    Article  CAS  Google Scholar 

  • Wen, J. H., Geng, Z. R., Yin, Y. X., & Wang, Z. L. (2011). A versatile water soluble fluorescent probe for ratiometric sensing of Hg2+ and bovine serum albumin. Dalton Transactions, 40, 9737–9745. DOI: 10.1039/c1dt10362h.

    Article  CAS  Google Scholar 

  • Wu, S. P., Du, K. J., & Sung, Y. M. (2010). Colorimetric sensing of Cu(II): Cu(II) induced deprotonation of an amide responsible for color changes. Dalton Transactions, 39, 4363–4368. DOI: 10.1039/b925898a.

    Article  CAS  Google Scholar 

  • Xie, R. J., Yi, Y. R., He, Y., Liu, X. G., & Liu, Z. X. (2013). A simple BODIPY-imidazole-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron, 69, 8541–8546. DOI: 10.1016/j.tet.2013.07.059.

    Article  CAS  Google Scholar 

  • Xing, X. Q., Du, R., Li, Y. F., Li, B., Cai, Q., Mo, G., Gong, Y., Chen, Z. G., & Wu, Z. H. (2013). Structural change of human hair induced by mercury exposure. Environmental Science & Technology, 47, 11214–11220. DOI: 10.1021/es402335k.

    Article  CAS  Google Scholar 

  • Yang, M. H., Thirupathi, P., & Lee, K. H. (2011). Selective and sensitive ratiometric detection of Hg(II) ions using a simple amino acid based sensor. Organic Letters, 13, 5028–5031. DOI: 10.1021/ol201683t.

    Article  CAS  Google Scholar 

  • Zhao, Q. H., Wang, Y., Cao, Y., Chen, A. G., Ren, M., Ge, Y. S., Yu, Z. F., Wan, S. Y., Hu, A. L., Bo, Q. L., Ruan, L., Chen, H., Qin, S. Y., Chen, W. J., Hu, C. L., Tao, F. B., Xu, D. X., Xu, J., Wen, L. P., & Li, L. (2014). Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China. Science of The Total Environment, 470–471, 340–347. DOI: 10.1016/j.scitotenv.2013.09.086.

    Article  Google Scholar 

  • Zhong, K. L., Zhou, X., Hou, R. B., Zhou, P., Hou, S. H., Bian, Y. J., Zhang, G., Tang, L. J., & Shang, X. H. (2014). A water-soluble highly sensitive and selective fluorescent sensor for Hg2+ based on 2-(2-(8-hydroxyquinolin)-yl)benzimidazole via ligand-to-metal charge transfer (LMCT). RSC Advances, 4, 16612–16617. DOI: 10.1039/c4ra00060a.

    Article  CAS  Google Scholar 

  • Zhou, H. P., Wang, J. Q., & Chen, Y. X., Xi, W. G., Zheng, Z., Xu, D. L., Cao, Y. L., Liu, G., Zhu, W. J., Wu, J. Y., & Tian, Y. P. (2013). New diaminomaleonitrile derivatives containing aza-crown ether: Selective, sensitive and colorimetric chemosensors for Cu(II). Dyes and Pigments, 98, 1–10. DOI: 10.1016/j.dyepig.2013.01.018.

    Article  CAS  Google Scholar 

  • Zhu, M., Yuan, M. J., Liu, X. F., Xu, J. L., Lv, J., Huang, C. S., Liu, H. B., Li, Y. L., Wang, S., & Zhu, D. B. (2008). Visible near-infrared chemosensor for mercury ion. Organic Letters, 10, 1481–1484. DOI: 10.1021/ol800197t.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Xiang Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, JT., Zhu, F., Kong, L. et al. A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye. Chem. Pap. 69, 527–535 (2015). https://doi.org/10.1515/chempap-2015-0061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0061

Keywords

Navigation