Skip to main content
Log in

Microfiltration of post-fermentation broth with backflushing membrane cleaning

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Separation of microorganism cells from broth is a very important stage in the recovery of fermentation products. The microfiltration of fermented glycerol solutions was studied. During this process, the filter cake building up on the membrane surface caused an increase of filtration resistances, resulting in the decrease of the permeate flux. In this work, short time reverse flow of permeate was used to remove the fouling layer after each cycle of the filtration. The applied periodical membrane cleaning led to minimization of the observed fouling effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhondi, E., Wicaksana, F., Krantz, W. B., & Fane, A. G. (2014). Influence of dissolved air on the effectiveness of cyclic backwashing in submerged membrane systems. Journal of Membrane Science, 456, 77–84. DOI: 10.1016/j.memsci.2013.12.053.

    Article  CAS  Google Scholar 

  • Bacchin, P., Aimar, P., & Field, R. W. (2006). Critical and sustainable fluxes: Theory, experiments and applications. Journal of Membrane Science, 281, 42–69. DOI: 10.1016/j.memsci.2006.04.014.

    Article  CAS  Google Scholar 

  • Bastrzyk, J., Gryta, M., & Karakulski, K. (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chemical Papers, 68, 757–765. DOI: 10.2478/s11696-013-0520-8.

    Article  CAS  Google Scholar 

  • Belfer, S., Fainshtain, R., Purinson, Y., Gilron, J., Nyström, M., & Mänttäri, M. (2004). Modification of NF membrane properties by in situ redox initiated graft polymerization with hydrophilic monomers. Journal of Membrane Science, 239, 55–64. DOI: 10.1016/j.memsci.2003.09.029.

    Article  CAS  Google Scholar 

  • Bird, M. R., & Bartlett, M. (2002). Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. Journal of Food Engineering, 53, 143–152. DOI: 10.1016/s0260-8774(01)00151-0.

    Article  Google Scholar 

  • Blanpain-Avet, P., Migdal, J. F., & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency. Food and Bioproducts Processing, 82, 231–243. DOI: 10.1205/fbio.82.3.231.44182.

    Article  CAS  Google Scholar 

  • Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Applied Microbiology and Biotechnology, 38, 453–457. DOI: 10.1007/bf00242936.

    Article  CAS  Google Scholar 

  • Bonnélye, V., Guey, L., & Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination, 222, 59–65. DOI: 10.1016/j.desal.2007.01.129.

    Article  Google Scholar 

  • Drożdżyńska, A., Leja, K., & Czaczyk, K. (2011). Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia: Journal of Biotechnology, Computational Biology and Bionanotechnology, 92, 92–100.

    Google Scholar 

  • Gong, Y., Tang, Y., Wang, X. L., Yu, L. X., & Liu, D. H. (2004). The possibility of the desalination of actual 1,3 propanediol fermentation broth by electrodialysis. Desalination, 161, 169–178. DOI: 10.1016/s0011-9164(04)90052-5.

    Article  CAS  Google Scholar 

  • Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. Journal of Membrane Science, 431, 1–8. DOI: 10.1016/j.memsci.2012.12.032.

    Article  CAS  Google Scholar 

  • Hao, J., Xu, F., Liu, H., & Liu, D. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81, 102–108. DOI: 10.1002/jctb.1369.

    Article  CAS  Google Scholar 

  • Hoek, E. M. V., Bhattacharjee, S., & Elimelech, M. (2003). Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 19, 4836–4847. DOI: 10.1021/la027083c.

    Article  CAS  Google Scholar 

  • Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147, 251–255. DOI: 10.1016/s0011-9164(02)00545-3.

    Article  CAS  Google Scholar 

  • Kang, I. J., Yoon, S. H., & Lee, C. H. (2002). Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor. Water Research, 36, 1803–1813. DOI: 10.1016/s0043-1354(01)00388-8.

    Article  CAS  Google Scholar 

  • Karakulski, K., Gryta, M., & Bastrzyk, J. (2013). Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chemical Papers, 67, 1164–1171. DOI: 10.2478/s11696-013-0314-z.

    Article  CAS  Google Scholar 

  • Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D., & Starov, V. (2004). Sieve mechanism of microfiltration separation. Colloids and Surfaces A: Physicochemical Engineering Aspects, 230, 167–182. DOI: 10.1016/j.colsurfa.2003.09.027.

    Article  Google Scholar 

  • Lee, D. J., Chen, G. Y., Chang, Y. R., & Lee, K. R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. Journal of the Taiwan Institute of Chemical Engineers, 43, 948–952. DOI: 10.1016/j.jtice.2012.07.002.

    Article  CAS  Google Scholar 

  • Makardij, A., Chen, X. D., & Farid, M. M. (1999). Microfiltration and ultrafiltration of milk: Some aspects of fouling and cleaning. Food and Bioproducts Processing, 77, 107–113. DOI: 10.1205/096030899532394.

    Article  Google Scholar 

  • Metsoviti, M., Zeng, A. P., Koutinas, A. A., & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bio-processes. Journal of Biotechnology, 163, 408–418. DOI: 10.1016/j.jbiotec.2012.11.018.

    Article  CAS  Google Scholar 

  • Mohammad, A. W., Basha, R. K., & Leo, C. P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. Journal of Food Engineering, 97, 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010.

    Article  CAS  Google Scholar 

  • Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: Recent development and emerging opportunities. Biotechnology Advances, 27, 895–913. DOI: 10.1016/j.biotechadv.2009.07.003.

    Article  CAS  Google Scholar 

  • Pollice, A., Brookes, A., Jefferson, B., & Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors — a review of recent literature. Desalination, 174, 221–230. DOI: 10.1016/j.desal.2004.09.012.

    Article  CAS  Google Scholar 

  • Schäfer, A. I., Fane, A. G., & Waite, T. D. (Eds.) (2005). Nanofiltration: Principles and applications. Kidlington, UK: Elsevier.

    Google Scholar 

  • Tomczak, W., & Gryta, M. (2013). The application of ultrafiltration for separation of glycerol solution fermented by bacteria. Polish Journal of Chemical Technology, 15, 115–120. DOI: 10.2478/pjct-2013-0057.

    Article  CAS  Google Scholar 

  • Ulbricht, M., Ansorge, W., Danielzik, I., König, M., & Schuster, O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Separation and Purification Technology, 68, 335–342. DOI: 10.1016/j.seppur.2009.06.004.

    Article  CAS  Google Scholar 

  • Vellenga, E., & Trägärdh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211–220. DOI: 10.1016/s0011-9164(98)00219-7.

    Article  CAS  Google Scholar 

  • Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S., & Lee, C. H. (2000). Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 169, 269–276. DOI: 10.1016/s0376-7388(99)00345-2.

    Article  CAS  Google Scholar 

  • Weng, Y. H., Wei, H. J., Tsai, T. Y., Chen, W. H., Wei, T. Y., Hwang, W. S., Wang, C. P., & Huang, C. P. (2009). Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 67, 95–102. DOI: 10.1016/j.seppur.2009.03.030.

    Article  CAS  Google Scholar 

  • Xu, P., Drewes, J. E., Kim, T. U., Bellona, C., & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. Journal of Membrane Science, 279, 165–175. DOI: 10.1016/j.memsci.2005.12.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Gryta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryta, M., Tomczak, W. Microfiltration of post-fermentation broth with backflushing membrane cleaning. Chem. Pap. 69, 544–552 (2015). https://doi.org/10.1515/chempap-2015-0060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0060

Keywords

Navigation