Skip to main content
Log in

Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

An Erratum to this article was published on 08 February 2017

Abstract

A simple, efficient procedure for the preparation of phospho sulfonic acid PO(OSO3H)3 as a Brønsted acidic and recoverable heterogeneous catalyst is described, used for the one-pot synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes. A cost-effective, simple and convenient procedure for the synthesis of aryl-14H-dibenzo[a,j]xanthenes was developed via a one-pot condensation from substituted benzaldehydes and β-naphthol under solvent-free conditions. The one-pot condensation of substituted benzaldehydes and 5,5-dimethyl-1,3-cyclohexanedione (dimedone) under solvent-free conditions leads to 1,8-dioxo-octahydro-xanthenes. These protocols afford a number of advantages, such as: excellent yields, very short reaction times, easy procedure, simple methodology and ease of preparation and regeneration of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M., King, T. A., Ko, D. K., Cha, B.H., & Lee, J. M. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. Journal of Physics D: Applied Physics, 35, 1473–1476. DOI: 10.1088/0022-3727/35/13/303.

    Article  CAS  Google Scholar 

  • Bigdeli, M. A., Heravi, M. M., & Mahdavinia, G. H. (2007). Silica supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes. Journal of Molecular Catalalysis A: Chemical, 275, 25–29. DOI: 10.1016/j.molcata.2007.05.007.

    Article  CAS  Google Scholar 

  • Carrigan, M. D., Eash, K. J., Oswald, M. C., & Mohan, R. S. (2001). An efficient method for the chemoselective synthesis of from aromatic aldehydes using bismuth trifiate. Tetrahedron Letters, 42, 8133–8135. DOI: 10.1016/s0040-4039(01)01756-7.

    Article  CAS  Google Scholar 

  • Dabiri, M., Azimi, S. C., & Bazgir, A. (2008). One-pot synthesis of xanthene derivatives under solvent-free conditions. Chemical Papers, 62, 522–526. DOI: 10.2478/s11696-008-0050-y.

    Article  CAS  Google Scholar 

  • Das, B., Ravikanth, B., Ramu, R., Laxminarayana, K., & Rao, B. V. (2006). Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes. Journal of Molecular Catalalysis A: Chemical, 255, 74–77. DOI: 10.1016/j.molcata.2006.04.007.

    Article  CAS  Google Scholar 

  • Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.

    Article  CAS  Google Scholar 

  • Hajipour, A. R., Khazdooz, L., & Ruoho, A. E. (2008). Brønsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1-diacetates under solvent-free conditions. Catalysis Communications, 9, 89–96. DOI: 10.1016/j.catcom.2007.05.003.

    Article  CAS  Google Scholar 

  • Hajinasiri, R., & Rezayati, S. (2013). Solvent-free synthesis of 1,2-disubstituted derivatives of 1,2-dihydroisoquinoline, 1,2 dihydroquinoline and 1,2-dihydropyridine. Zeitschrift für Naturforschung B, 68, 818–822. DOI: 10.5560/znb.2013-3095.

    Article  CAS  Google Scholar 

  • Hasaninejad, A., Dadar, M., & Zare, A. (2012). Silica-supported phosphorus containing catalysts efficiently promoted synthesis of 1,8-dioxo-octahydro-xanthenes under solvent-free conditions. Chemical Science Transactions, 1, 233–238. DOI: 10.7598/cst2012.107.

    Article  Google Scholar 

  • Horning, E. C., & Horning, M. G. (1964). Methone derivatives of aldehydes. The Journal of Organic Chemistry, 11, 95–99. DOI: 10.1021/jo01171a014.

    Article  Google Scholar 

  • Jha, A., & Beal, J. (2004). Convenient synthesis of 12H-benzo[a]xanthenes from 2-tetralone. Tetrahedron Letters, 45, 8999–9001. DOI: 10.1016/j.tetlet.2004.10.046.

    Article  CAS  Google Scholar 

  • Jin, T. S., Zhang, J. S., Xiao, J. C., Wang, A. Q., & Li, T. S. (2004). Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenezenesulfonic acid in aqueous media. Synlett, 5, 866–870. DOI: 10.1055/s-2004-820022.

    Article  Google Scholar 

  • Jin, T. S., Zhang, J. S., Wang, A. Q., & Li, T. S. (2005). Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature. Synthetic Communications, 35, 2339–2345. DOI: 10.1080/00397910500187282.

    Article  CAS  Google Scholar 

  • Karami, B., Zare, Z., & Eskandari, K. (2013). Molybdate sulfonic acid: Preparation, characterization and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis. Chemical Papers, 67, 145–154. DOI: 10.2478/s11696-012-0263-y.

    CAS  Google Scholar 

  • Khosropour, A. R., Khodaei, M. M., & Moghannian, H. (2005). A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a,j]xanthenes catalyzed by pTSA in solution and solvent-free conditions. Synlett, 6, 955–958. DOI: 10.1055/s-2005-864837.

    Article  Google Scholar 

  • Kiasat, A. R., & Fallah-Mehrjardi, M. (2008). B(HSO4)3: A novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solvent-free conditions. Journal of the Brazilian Chemical Society, 19, 1595–1599. DOI: 10.1590/s0103-50532008000800020.

    Article  CAS  Google Scholar 

  • Kiasat, A. R., Mouradzadegun, A., & Saghanezhad, S. J. (2013). Phospho sulfonic acid: A novel and efficient solid acid catalyst for the one-pot preparation of indazolo[1,2-b]-phthalazinetriones. Journal of the Serbian Chemical Society, 78, 469–476. DOI: 10.2298/jsc120508088k.

    Article  CAS  Google Scholar 

  • Kitahara, Y., & Tanaka, K. (2002). Synthesis, crystal structure and properties of thiaheterohelicenes containing phenolic hydroxy functions. Chemical Communications, 2002, 932–933. DOI: 10.1039/b110514k.

    Article  Google Scholar 

  • Knight, C. G., & Stephens, T. (1989). Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochemical Journal, 258, 683–687.

    Article  CAS  Google Scholar 

  • Knignt, D. W., & Little, P. B. (1998). The first high-yielding benzyne cyclization using a phenolic nucleophile: A new route to xanthenes. Synlett, 1998, 1141–1143. DOI: 10.1055/s-1998-1878.

    Article  Google Scholar 

  • Ko, S. K., & Yao, C. F. (2006). Heterogeneous catalyst: Amberlyst-15 catalyzes the synthesis of 14-substituted-14H-dibenzo[a,j]xanthenes under solvent-free conditions. Tetrahedron Letters, 47, 8827–8829. DOI: 10.1016/j.tetlet.2006.10.072.

    Article  CAS  Google Scholar 

  • Kumar, P. S., Sunil Kumar, B., Rajitha, B., Narsimha Reddy, P., Sreenivasulu, N., & Thirupathi Reddy, Y. (2006). A novel one pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes catalyzed by selectfluor™ under solvent free conditions. Arkivoc, 2006, 46–50. DOI: 10.3998/ark.5550190.0007.c05.

    Google Scholar 

  • Kumar, R., Nandi, G. C., Verma, R. K., & Singh, M. S. (2010). A facile approach for the synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthenes under solvent-free condition. Tetrahedron Letters, 51, 442–445. DOI: 10.1016/j.tetlet.2009.11.064.

    Article  CAS  Google Scholar 

  • Kuo, C. W., & Fang, J. M. (2001). Synthsis of xanthnes, indanes and tetrahydronaphthalenes via intramolecular phenyl-carbonyl coupling reactions. Synthetic Communications, 31, 877–892. DOI: 10.1081/scc-100103323.

    Article  CAS  Google Scholar 

  • Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B., & Thomas, G. J. (1997). International Patent No. WO9706178. The International Patent System.

  • Mokhtary, M., & Refahati, S. (2013). Polyvinylpolypyrrolidone-supported boron trifluoride (PVPP-BF3): Mild and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j] xanthenes and bis(naphthalen-2-yl-sulfane) derivatives. Dyes and Pigments, 99, 378–381. DOI: 10.1016/j.dyepig.2013.05.023.

    Article  CAS  Google Scholar 

  • Madhav, J. V., Kuarm, B. S., & Rajitha, B. (2008). Dipyridine cobalt chloride: A novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under solvent-free conditions. Arkivoc, 2008, 204–209. DOI: 10.3998/ark.5550190.0009.222.

    Article  Google Scholar 

  • Mahdavinia, G. H., Rostamizadeh, S., Amani, A. M., & Emdadi, Z. (2009). Ultrasound-promoted greener synthesis of aryl-14H-dibenzo[a,j]xanthenes catalyzed by NH4H2PO4/SiO2 in water. Ultrasonics sonochemistry, 16, 7–10. DOI: 10.1016/j.ultsonch.2008.05.010.

    Article  CAS  Google Scholar 

  • Nagarapu, L., Kantevari, S., Mahankhali, V. C., & Apuri, S. (2007). Potassium dodecatungsto cobaltate trihydrate (K5CoW12O40 · 3H2O): A mild and efficient reusable catalyst for the synthesis of aryl-14H-dibenzo[a,j]xanthenes under conventional heating and microwave irradiation. Catalysis Communications, 8, 1173–1177. DOI: 10.1016/j.catcom.2006.11.003.

    Article  CAS  Google Scholar 

  • Nazari, S., Keshavarz, M., Karami, B., Iravani, N., & Vafaee-Nezhad, M. (2014). Imidazol-1-yl-acetic acid as a novel green bifunctional organocatalyst for the synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions. Chinese Chemical Letters, 25, 317–320. DOI: 10.1016/j.cclet.2013.12.011.

    Article  CAS  Google Scholar 

  • Pasha, M. A., & Jayashankara, V. P. (2007). Molecular iodine catalyzed synthesis of aryl-14H-dibenzo[a,j]xanthenes under solvent-free condition. Bioorganic & Medicinal Chemistry Letters, 17, 621–623. DOI: 10.1016/j.bmcl.2006.11.009.

    Article  CAS  Google Scholar 

  • Patil, S. B., Bhat, R. P., & Samant, S. D. (2006). Cation exchange resins: Efficient heterogeneous catalysts for facile synthesis of dibenzoxanthene from β-naphthol and aldehydes. Synthetic Communications, 36, 2163–2168. DOI: 10.1080/00397910600639372.

    Article  Google Scholar 

  • Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G., & Lacroix, R. (1978). Synthesis and anti inflammatory properties of bis (2-hydroxy-1-naphthyl)methane derivatives. European Journal of Medicinal Chemistry, 13, 67–71.

    CAS  Google Scholar 

  • Rajitha, B., Kumar, B. S., Reddy, Y. T., Reddy, P. N., & Sreenivasulu, N. (2005). Sulfamic acid: A novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a,j]xanthenes under conventional heating and microwave irradiation. Tetrahedron Letters, 46, 8691–8693. DOI: 10.1016/j.tetlet.2005.10.057.

    Article  CAS  Google Scholar 

  • Rao, G. B. D., Kaushik, M. P., & Halve, A. K. (2012). An efficient synthesis of naphtha[1,2-e]oxazinone and 14-substituted-14H-dibenzo[a,j]xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solventfree conditions. Tetrahedron Letters, 53, 2741–2744. DOI: 10.1016/j.tetlet.2012.03.085.

    Article  Google Scholar 

  • Rezayati, S., Hajinasiri, R., Erfani, Z., Rezayati, S., & Afshari-Sharifabad, S. (2014). Boric acid as a highly efficient and reusable catalyst for the one-pot synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Iranian Journal of Catalysis, 4, 157–162.

    Google Scholar 

  • Saini, A., Kumar, S., & Sandhu, J. S. (2006). A new LiBr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a,j]xanthenes and tetrahy-drobenzo[b]pyrans under solvent-free conventional and microwave heating. Synlett, 2006, 1928–1932. DOI: 10.1055/s-2006-947339.

    Article  Google Scholar 

  • Sajjadifar, S., & Rezayati, S. (2014). Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature. Chemical Papers, 68, 531–539. DOI: 10.2478/s11696-013-0480-z.

    Article  CAS  Google Scholar 

  • Sarkar, A., Roy, S. R., Parikh, N., & Chakraborti, A. K. (2011). Nonsolvent application of ionic liquids: organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. The Journal of Organic Chemistry, 76, 7132–7140. DOI: 10.1021/jo201102q.

    Article  CAS  Google Scholar 

  • Seyyedhamzeh, M., Mirzaei, P., & Bazgir, A. (2008). Solvent-free synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dyes and Pigments, 76, 836–839. DOI: 10.1016/j.dyepig.2007.02.001.

    Article  CAS  Google Scholar 

  • Shakibaei, G. I., Mirzaei, P., & Bazgir, A. (2007). Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Applied Catalalysis A: General, 325, 188–192. DOI: 10.1016/j.apcata.2007.03.008.

    Article  CAS  Google Scholar 

  • Shaterian, H. R., Ghashang, M., & Mir, N. (2007). Aluminium hydrogensulfate as an efficient and heterogeneous catalyst for preparation of aryl 14H-dibenzo[a,j]xanthene derivatives under thermal and solvent-free conditions. Arkivoc, 2007, 1–10. DOI: 10.3998/ark.5550190.0008.f01.

    Google Scholar 

  • Shirini, F., & Khaligh, N. G. (2012). Succinimide-N-sulfonic acid: An efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Dyes and Pigments, 95, 789–794. DOI: 10.1016/j.dyepig.2012.06.022.

    Article  CAS  Google Scholar 

  • Shirini, F., Yahyazadeh, A., & Mohammadi, K. (2014). One-pot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent-free conditions. Chinese Chemical Letters, 25, 341–347. DOI: 10.1016/j.cclet.2013.11.016.

    Article  CAS  Google Scholar 

  • Sivaguru, P., & Lalitha, A. (2014). Ceric ammonium nitrate supported HY-zeolite: An efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes. Chinese Chemical Letters, 25, 321–323. DOI: 10.1016/j.cclet.2013.11.043.

    Article  CAS  Google Scholar 

  • Song, G. Y., Wang, B., Luo, H. T., & Yang, L. M. (2007). Fe3+-montmorillonite as a cost effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catalysis Communications, 8, 673–676. DOI: 10.1016/j.catcom.2005.12.018.

    Article  CAS  Google Scholar 

  • Takeshiba, H., & Jiyoujima, T. (1981). Japan Patent No. 56005480. Tokyo, Japan: Japan Patent Office.

  • Tayebee, R., & Tizabi, S. (2012) Highly efficient and environmentally friendly preparation of 14-aryl-14H dibenzo[a,j]xanthenes catalyzed by tungsto-divanado-phosphoric acid. Chinese Journal of Catalysis, 33, 962–969.

    Article  CAS  Google Scholar 

  • Tisseh, Z. N., Azimi, S. C., Mirzaei, P., & Bazgir, A. (2008). The efficient synthesis of aryl-5H-dibenzo[b,i]xanthene-5,7,12,14 (13H)-tetraone leuco-dye derivatives. Dyes and Pigments, 79, 273–275. DOI: 10.1016/j.dyepig.2008.04.001.

    Article  CAS  Google Scholar 

  • Wang J. Q., & Harvey, G. R. (2002). Synthesis ofpolycyclic xanthenes and furans via palladium catalyzed cyclization of polycyclic aryltriflate esters. Tetrahedron, 58, 5927–5931. DOI: 10.1016/s1872-2067(11)60387-2.

    Article  CAS  Google Scholar 

  • Zareyee, D., Alizadeh, P., Ghandali, M. S., & Khalilzadeh, M. A. (2013). Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon. Chemical Papers, 67, 713–721. DOI: 10.2478/s11696-013-0369-x.

    Article  CAS  Google Scholar 

  • Zareyee, D., & Serehneh, M. (2014). Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation. Journal of Molecular Catalysis A: Chemical, 391, 88–91. DOI: 10.1016/j.molcata.2014.04.013.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., & Liu, Y. H. (2008). Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catalysis Communications, 9, 1715–1719. DOI: 10.1016/j.catcom.2008.01.031.

    Article  CAS  Google Scholar 

  • Zolfigol, M. A., Vahedi, H., Massoudi, A., Sajjadifar, S., Louie, O., & Javaherneshan, N. (2011). Mild and efficient one pot synthesis of benzimidazoles from aldehydes by using BSA as a new catalyst. Clinical Biochemistry, 44, S219. DOI: 10.1016/j.clinbiochem.2011.08.973.

    Article  Google Scholar 

  • Zolfigol, M. A., Khakyzadeh, V., Moosavi-Zare, A. R., Zare, A., Azimi, S. B., Asgari, Z., & Hasaninejad, A. (2012). Preparation of various xanthene derivatives over sulfonic acid functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. Comptes Rendus Chimie, 15, 719–736. DOI: 10.1016/j.crci.2012.05.003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahimeh Hajinasiri.

Additional information

A corrigendum to this article is available at http://dx.doi.org/10.1007/s11696-017-0134-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezayati, S., Erfani, Z. & Hajinasiri, R. Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes. Chem. Pap. 69, 536–543 (2015). https://doi.org/10.1515/chempap-2015-0058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0058

Keywords

Navigation