Chemical Papers

, Volume 69, Issue 4, pp 504–509 | Cite as

Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol

  • Hasina Yasmin
  • Mohammed Shafikur Rahman
  • Takayuki Shibata
  • Tsutomu Kabashima
  • Masaaki Kai
Original Paper
  • 10 Downloads

Abstract

A novel fluorometric method was developed for the sensitive and selective detection of Pro-Gly (PG) and Pro-Gly-Pro (PGP) using 4-chlorobenzene-1,2-diol (4-CBD) as a fluorogenic reagent. The reaction was performed at 37°C for 30 min in the presence of a borate buffer (pH 7.0) and sodium periodate. The resulting fluorescence intensity was measured using a spectrofluorometer with excitation and emission wavelengths of 450 nm and 535 nm. To obtain a stable fluorescent signal and maximise its intensity, different reaction conditions such as the concentrations of the reagents, the reaction time, and the pH were optimised. Under the optimised conditions, a linear relationship was obtained between fluorescence intensity and peptide concentrations from 1.0–40.0 µmol L−1 with a limit of detection of 1.0 µmol L−1 (S/N = 3). Both PG and PGP generated a strong signal out of all the peptides tested and no other biogenic substances such as amino acids or proteins produced any fluorescence. The reaction thus developed is simple, rapid, selective, and sensitive. It can be applied to the determination of peptides as biomarkers or substrates.

Keywords

fluorescence 4-chlorobenzene-1,2-diol selectivity PG PGP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, A. M., Batchelor, D. C., Thomas, G. B., Wen, J. Y., Rafiee, M., Lin, H., & Guan, J. (2005). Central penetration and stability of N-terminal tripeptide of insulin-like growth factor-I, glycine-proline-glutamate in adult rat. Neuropeptides, 39, 81–87. DOI:  10.1016/j.npep.2004.11.001.CrossRefGoogle Scholar
  2. Gaggar, A., Jackson, P. L., Noerager, B. N., O’Reilly, P. J., McQuaid, D. B., Rowe, S. M., Clancy, J. P., & Blalock, J. E. (2008). A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. The Journal of Immunology, 180, 5662–5669. DOI:  10.4049/jimmunol.180.8.5662.CrossRefGoogle Scholar
  3. Gentilucci, L. (2004). New trends in the development of opioid peptide analogues as advanced remedies for pain relief. Current Topics in Medicinal Chemistry, 4, 19–38. DOI:  10.2174/1568026043451663.CrossRefGoogle Scholar
  4. Ioudina, M., & Uemura, E. (2003). A three amino acid peptide, Gly-Pro-Arg, protects and rescues cell death induced by amyloid β-peptide. Experimental Neurology, 184, 923–929. DOI:  10.1016/s0014-4886(03)00314-5.CrossRefGoogle Scholar
  5. Kabashima, T., Yu, Z. Q., Tang, C. H., Nakagawa, Y., Okumura, K., Shibata, T., Lu, J. Z., & Kai, M. (2008). A selective fluorescence reaction for peptides and chromatographic analysis. Peptides, 29, 356–363. DOI:  10.1016/j.peptides.2007.11.014.CrossRefGoogle Scholar
  6. Lyapina, L. A., Pastorova, V. E., Samonina, G. E., & Ashmarin, I. P. (2000). The effect of prolil-glycil-proline (PGP) peptide and PGP-rich substances on haemostatic parameters of rat blood. Blood Coagulation & Fibrinolysis, 11, 409–414. DOI:  10.1097/00001721-200007000-00002.CrossRefGoogle Scholar
  7. Pan, W., & Kastin, A. J. (2007). From MIF-1 to endomorphin: the Tyr-MIF-1 family of peptides. Peptides, 28, 2411–2434. DOI:  10.1016/j.peptides.2007.10.006.CrossRefGoogle Scholar
  8. Pickart, L., Freedman, J. H., Loker, W. J., Peisach, J., Perkins, C. M., Stenkamp, R. E., & Weinstein, B. (1980). Growth-modulating plasma tripeptide may function by facilitating copper uptake into cells. Nature, 288, 715–717. DOI:  10.1038/288715a0.CrossRefGoogle Scholar
  9. Ramesh, C. V., Jayakumar, R., & Puvanakrishnan, R. (1995). In vitro studies on a novel micelle-forming peptide with anticoagulant activity. International Journal of Peptide and Protein Research, 45, 386–390. DOI:  10.1111/j.1399-3011.1995.tb01053.x.CrossRefGoogle Scholar
  10. Sara, V. R., Carlsson-Skwirut, C., Bergman, T., Jörnvall, H., Roberts, P. J., Crawford. M., Håkansson, L. N., Civalero, I., & Nordberg, A. (1989). Identification of Gly-Pro-Glu (GPE), the aminoterminal tripeptide of insulin-like growth factor 1 which is truncated in brain, as a novel neuroactive peptide. Biochemical and Biophysical Research Communications, 165, 766–771. DOI:  10.1016/s0006-291x(89)80032-4.CrossRefGoogle Scholar
  11. Sizonenko, S. V., Sirimanne, E. S., Williams, C. E., & Gluckman, P. D. (2001). Neuroprotective effects of the N-terminal tripeptide of IGF-1, glycine-proline-glutamate, in the immature rat brain after hypoxic-ischemic injury. Brain Research, 922, 42–50. DOI:  10.1016/s0006-8993(01)03148-1.CrossRefGoogle Scholar
  12. Toyo’oka, T., Ishibashi, M., & Terao, T. (1994). Sensitive determination of N-terminal prolyl peptides by high-performance liquid chromatography with laser-induced fluorescence detection. Journal of Chromatography A, 661, 105–112. DOI:  10.1016/0021-9673(94)85182-4.CrossRefGoogle Scholar
  13. Yasmin, H., Shibata, T., Rahman, M. S., Kabashima, T., & Kai, M. (2012). Selective and sensitive determination of peptides using 3,4-dihydroxyphenylacetic acid as a fluorogenic reagent. Analytica Chimica Acta, 721, 162–166. DOI:  10.1016/j.aca.2012.01.035.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  • Hasina Yasmin
    • 1
    • 2
  • Mohammed Shafikur Rahman
    • 1
    • 2
  • Takayuki Shibata
    • 1
  • Tsutomu Kabashima
    • 1
  • Masaaki Kai
    • 1
  1. 1.Graduate School of Biomedical Sciences, Faculty of Pharmaceutical SciencesNagasaki UniversityNagasakiJapan
  2. 2.Department of PharmacyState University of BangladeshDhakaBangladesh

Personalised recommendations