Chemical Papers

, Volume 69, Issue 3, pp 416–424 | Cite as

Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas

  • Aneeta Pake
  • Chonlatee Cheewasedtham
  • Wilairat Cheewasedtham
Original Paper


Biogas production is proposed as an alternative approach to using natural rubber Hevea brasiliensis latex serum, a major waste product from the production of concentrated latex. To make the most efficient use of the reactor size, the addition of macroalgal biomass as a co-substrate to the fermentation system was investigated. The biogas yield of latex serum as a single substrate was (398 ± 14) L per kg of volatile solids added (VSA). For the co-digestion system, algae mixed with serum were investigated at wet mass ratios of Chaetomorpha sp. to Ulva intestinalis to serum at 3:0:1, 2:0:2, 1:0:3, 0:1:3, 0:2:2 and 0:3:1. Theco-digestion system with latex serum at 2 to 3 out of 4 parts produced the highest biogas yields within the range of 422–460 L kg−1 of VSA. Other parameters such as carbon to nitrogen mass ratio, total solids content and initial pH value were investigated at the constant ratio of 1: 3 of Chaetomorpha sp. to latex serum, and the parameter settings of 15, 10.5 % and 7, respectively, were close to optimal, with an (888 ± 155) Lkg−1 of VSA cumulative gas yield. The methane yield of the optimised system over 45 days was (197 ± 16) L kg−1 of VSA and the reduction in COD was (40 ± 4) %. Latex serum, whether alone or co-digested with algae in biogas production, appears to be promising for the management of waste in concentrated latex production.


biogas Hevea brasiliensis natural rubber latex serum macroalgae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfa, I. M., Dahunsi, S. O., Iorhemen, O. T., Okafor, C. C., & Ajayi, S. A. (2014) Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemon grass. Bioresource Technology, 157, 270–277. DOI:  10.1016/j.biortech.2014.01.108.CrossRefGoogle Scholar
  2. Alvarez, R., & Lidén, G. (2008) Semi-continuous co-digestion of solid slaughterhouse waste, manure and fruit and vegetable waste. Renewable Energy, 33, 726–734. DOI:  10.1016/j.renene.2007.05.001.CrossRefGoogle Scholar
  3. Association of Official Analytical Chemists (2000) Official methods of analysis (17th ed.). Madison, WI, USA: Association of Official Analytical Chemists.Google Scholar
  4. American Public Health Association (1998) Standard methods for the examination of water and waste water (20th ed.). Washington, DC, USA: American Public Health Association.Google Scholar
  5. Bruhn, A., Dahl, J., Nielsen, H. B., Nikolaisen, L., Rasmussen, M. B., Markager, S., Olesen, B., Arias, C., & Jensen, P. D. (2011) Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technology, 102, 2595–2604. DOI:  10.1016/j.biortech.2010.10.010.CrossRefGoogle Scholar
  6. Bucholc, K., Szymczak-Żyła, M., Lubecki, L., Zamojska, A., Hapter, P., Tjernström, E., & Kowalewska, G. (2014) Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Science of the Total Environment 473–474, 298–307. DOI:  10.1016/j.scitotenv.2013.12.044.CrossRefGoogle Scholar
  7. Carver, S.M., Hulatt, C.J., Thomas, D.N., & Tuovinen, O.H. (2011) Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Biodegration, 22, 805–814. DOI:  10.1007/s10532-010-9419-z.CrossRefGoogle Scholar
  8. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008) Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044–4064. DOI:  10.1016/j.biortech.2007.01.057.CrossRefGoogle Scholar
  9. Costa, J. C., GonÇalves, P. R., Nobre, A., & Alves, M. M. (2012) Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresource Technology, 114, 320–326. DOI:  10.1016/j.biortech.2012.03.011.CrossRefGoogle Scholar
  10. El-Mashad, H. M., & Zhang, R. H. (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101, 4021–4028. DOI:  10.1016/j.biortech.2010.01.027.CrossRefGoogle Scholar
  11. Gurung, A., Van Ginkel, S. W., Kang, W. C., Qambrani, N. A., & Oh, S. E. (2012) Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study. Energy, 43, 396–401. DOI:  10.1016/ Scholar
  12. Kolesárová, N., Hutňan, M., Špalková, V., & Lazor, M. (2013) Anaerobic treatment of rapeseed meal. Chemical Papers, 67, 1569–1576. DOI:  10.2478/s11696-013-0318-8.CrossRefGoogle Scholar
  13. Li, L. H., Li, D., Sun, Y. M., Ma, L. L., Yuan, Z. H., & Kong, X. Y. (2010) Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy, 35, 7261–7266. DOI:  10.1016/j.ijhydene.2010.03.074.CrossRefGoogle Scholar
  14. Lim, Y. G., Niwa, C., Nagao, N., & Toda, T. (2008) Solubilization and methanogenesis of blue mussle in saline mesophilic anaerobic biodegradation. International Biodeterioration & Biodegradation, 61, 251–260. DOI:  10.1016/j.ibiod.2007.06.012.CrossRefGoogle Scholar
  15. Malta, E. J., & Verschuure, J. M. (1997) Effects of environmental variables on between-year variation of Ulva growth and biomass in a eutrophic brackish lake. Journal of Sea Research, 38, 71–84. DOI:  10.1016/s1385-1101(97)00039-7.CrossRefGoogle Scholar
  16. Marquez, G. P. B., Reichardt, W. T., Azanza, R. V., Klocke, M., & Montano, M. N. E. (2013) Thalassic biogas production from sea wrack biomass using different microbial seeds: Cow manure, marine sediment and sea wrack-associated microflora. Bioresource Technology, 133, 612–617. DOI:  10.1016/j.biortech.2013.01.082.CrossRefGoogle Scholar
  17. Matsui, T., & Koike, Y. (2010) Methane fermentation of a mixture of seaweed and milk at a pilot-scale plant. Journal of Bioscience and Bioengineering, 110, 558–563. DOI:  10.1016/j.jbiosc.2010.06.011.CrossRefGoogle Scholar
  18. Mehlich, A. (1984) Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416. DOI:  10.1080/00103628409367568.CrossRefGoogle Scholar
  19. Menéndez, M., Martínez, M., & Comín, F. A. (2001) A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. Journal of Experimental Marine Biology and Ecology, 256, 123–136. DOI:  10.1016/s0022-0981(00)00313-0.CrossRefGoogle Scholar
  20. Michalska, K., & Ledakowicz, S. (2013) Alkali pre-treatment of Sorghum Moench for biogas production. Chemical Papers, 67, 1130–1137. DOI:  10.2478/s11696-012-0298-0.CrossRefGoogle Scholar
  21. Msuya, F. E., & Neori, A. (2002) Ulva reticulata and Gracilaria crassa: Macroalgae that can biofilter effluent from tidal fish-ponds in Tanzania. Western Indian Ocean Journal of Marine Science, 1, 117–126.Google Scholar
  22. Nielsen, M. M., Bruhn, A., Rasmussen, M. B., Olesen, B., Larsen, M. M., & Møller, H. B. (2012) Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. Journal of Applied Phycology, 24, 449–458. DOI:  10.1007/s10811-011-9767-z.CrossRefGoogle Scholar
  23. Panyadee, S., Petiraksakul, A., & Phalakornkule, C. (2013) Biogas production from co-digestion of Phyllanthus emblica residues and food waste. Energy for Sustainable Development, 17, 515–520. DOI:  10.1016/j.esd.2013.07.003.CrossRefGoogle Scholar
  24. Parkin, G. F., & Owen, W. F. (1986) Fundamentals of anaerobic digestion of wastewater sludges. Journal of Environmental Engineering, 112, 867–920. DOI:  10.1061/(asce)0733-9372(1986)112:5(867).CrossRefGoogle Scholar
  25. Research and Development Centre for Thai Rubber Industry (2011, December 25). Statistics of rubber in Thailand. Retrieved December 25, 2011, from (in Thai)
  26. Sujanya, S., & Chandra, S. (2011) Effect of part replacement of chemical fertilizers with organic and bio-organic agents in ground nut, Arachis hypogea. Journal of Algal Biomass Utilization, 2, 38–41.Google Scholar
  27. Thai Latex Association (2011, December 25). Membership Thai Latex Association. Retrieved December 25, 2011, from (in Thai)
  28. Tekasakul, P., & Tekasakul, S. (2006) Environmental problems related to natural rubber production in Thailand. Journal of Aerosol Research, 21, 122–129.Google Scholar
  29. Vergara-Fernández, A., Vargas, G., Alarcón, N., & Velasco, A. (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338–344. DOI:  10.1016/j.biombioe.2007.10.005.CrossRefGoogle Scholar
  30. Walkley, A., & Black, I. A. (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.CrossRefGoogle Scholar
  31. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940. DOI:  10.1016/j.biortech.2008.02.044.CrossRefGoogle Scholar
  32. Weykam, G., Gómez, I., Wiencke, C., Iken, K., & Klöser, H. (1996) Photosynthetic characteristics and C: N ratios of macroalgae from King George Island (Antarctica). Journal of Experimental Marine Biology and Ecology, 204, 1–22. DOI:  10.1016/0022-0981(96)02576-2.CrossRefGoogle Scholar
  33. Yadvika, S., Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004) Enhancement of biogas production from solid substrates using different techniques: A review. Bioresource Technology, 95, 1–10. DOI:  10.1016/j.biortech.2004.02.010.CrossRefGoogle Scholar
  34. Zeeman, G., & Gerbens, S. (2001) CH4 Emissions from animal manure. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Retrieved May 29, 2014, from 3 CH4 Animal Manure.pdf
  35. Zhong, W. H., Zhang, Z. Z., Luo, Y. J., Qiao, W., Xiao, M., & Zhang, M. (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresource Technology, 114, 281–286. DOI:  10.1016/j.biortech.2012.02.111.CrossRefGoogle Scholar
  36. Zubr, J. (1986) Methanogenic fermentation of fresh and ensiled plant materials. Biomass, 11, 159–171. DOI:  10.1016/0144-4565(86)90064-8.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Aneeta Pake
    • 1
  • Chonlatee Cheewasedtham
    • 2
  • Wilairat Cheewasedtham
    • 1
  1. 1.Analytical Chemistry and Environment Research Unit, Division of Chemistry, Department of Science, Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand
  2. 2.Ecological Aquaculture Research Unit, Department of Technology and Industry, Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand

Personalised recommendations