Chemical Papers

, Volume 69, Issue 3, pp 490–494 | Cite as

Conversion of phenylacetonitrile in supercritical alcohols within a system containing small volume of water

  • Zhi-Qiang Hou
  • Rui-Zhe Zhang
  • Li-Gang Luo
  • Jing Yang
  • Chun-Ze Liu
  • Yuan-Yuan Wang
  • Li-Yi Dai
Short Communication
  • 14 Downloads

Abstract

The reaction of phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water was studied. The effects of various operating conditions, such as reaction temperature, reaction time, the mole ratio of phenylacetonitrile/water/methanol or ethanol on the product yield were systematically investigated. The optimal yield of methyl phenylacetate for phenylacetonitrile in supercritical methanol in a system containing a small volume of water was 70 % at 583 K and 2.5 h. The optimal yield of ethyl phenylacetate for phenylacetonitrile in supercritical ethanol with a small volume of water was 80 % at 583 K and 1.0 h. At the same time, a feasible mechanism was proposed for phenylacetonitrile in supercritical methanol and ethanol in a system containing a small volume of water.

Keywords

phenylacetonitrile supercritical methanol/ethanol methyl phenylacetate ethyl phenylacetate alcoholysis reaction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bicker, M., Kaiser, D., Ott, L., & Vogel, H. (2005) Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. Journal of Supercritical Fluids, 36, 118–126. DOI:  10.1016/j.supflu.2005.04.004.CrossRefGoogle Scholar
  2. Buttery, R. G., Ling, L. C., & Teranishi, R. (1980) Volatiles of corn tassels: possible corn ear worm attractants. Journal of Agricultural and Food Chemistry, 28, 771–774. DOI:  10.1021/jf60230a020.CrossRefGoogle Scholar
  3. Caruso, M.M., Blaiszik, B.J., White, S. R., Sottos, N. R., & Moore, J. S. (2008) Full recovery of francture toughness using a nontoxic solvent-based self-healing system. Advanced Functional Materials, 18, 1898–1904. DOI:  10.1002/adfm.200800300.CrossRefGoogle Scholar
  4. Chang, Y. J., Wang, Z. Z., Luo, L. G., & Dai, L. Y. (2012) Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33–38. DOI:  10.2478/s11696-011-0093-3.CrossRefGoogle Scholar
  5. Demirbas, A. (2002) Biodiesel from vegetable oils via trans-esterification in supercritical methanol. Energy Conversion and Management, 43, 2349–2356. DOI:  10.1016/s0196-8904(01)00170-4.CrossRefGoogle Scholar
  6. Duan, P. G., Li, S., Yang, Y., Wang, Z. Z., & Dai, L. Y. (2009) Green medium for the hydrolysis of 5-cyanovaleramide. Chemical Engineering & Technology, 32, 771–777. DOI:  10.1002/ceat.200800607.CrossRefGoogle Scholar
  7. Gasson, E. J., & Hadley, D. J. (1960) U.S. Patent No. 2,921,088. Washington, D.C., USA: U.S. Patent and Trademark Office.Google Scholar
  8. Goto, M. (2009) Chemical recycling of plastics using sub- and supercritical fluids. Journal of Supercritical Fluids, 47, 500–507. DOI:  10.1016/j.supflu.2008.10.011.CrossRefGoogle Scholar
  9. He, M. X., Feng, D. C., Zhu, F., & Cai, Z. T. (2004) Alcoholysis of N-methyl-1,2-thiazetidine-1,1-dioxide: DFT study of water and alcohol effects. Journal of Physical Chemistry A, 108, 7702–7708. DOI:  10.1021/jp048374s.CrossRefGoogle Scholar
  10. Kamitanaka, T., Yamamoto, K., Matsuda, T., & Harada, T. (2008) Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols. Tetrahedron, 64, 5699–5702. DOI:  10.1016/j.tet.2008.04.029.CrossRefGoogle Scholar
  11. Karlsson, M.F., Birgersson, G., Prado, A.M.C., Bosa, F., Bengtsson, M., & Witzgall, P. (2009) Plant odor analysis of potato: Response of guatemalan moth to above- and belowground potato volatiles. Journal of Agricultural and Food Chemistry, 57, 5903–5909. DOI:  10.1021/jf803730h.CrossRefGoogle Scholar
  12. Kusdiana, D., & Saka, S. (2004) Effect of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91, 289–295. DOI:  10.1016/s0960-8524(03)00201-3.CrossRefGoogle Scholar
  13. Lee, G. R., & Crayston, J. A. (1996) Hydrolysis of acetonitrile in the presence of NbCl5. Polyhedron, 15, 1817–1821. DOI:  10.1016/0277-5387(95)00432-7.CrossRefGoogle Scholar
  14. Madras, G., Kolluru, C., & Kumar, R. (2004) Synthesis of biodiesel in supercritical fluids. Fuel, 83, 2029–2033. DOI:  10.1016/j.fuel.2004.03.014.CrossRefGoogle Scholar
  15. Minami, E. J., & Saka, S. (2006) Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel, 85, 2479–2483. DOI:  10.1016/j.fuel.2006.04.017.CrossRefGoogle Scholar
  16. Nomura, K., Ogura, H., & Imanishi, Y. (2002) Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure. Journal of Molecular Catalysis A: Chemical, 178, 105–114. DOI:  10.1016/s1381-1169(01)00281-3.CrossRefGoogle Scholar
  17. Periasamy, M., Babu, N. K., & Jayakumar, K. N. (2003) A novel arylation of arylacetic acid esters using tertiary arylamines and TiCl4. Tetrahedron Letters, 44, 8939–8941. DOI:  10.1016/j.tetlet.2003.10.009.CrossRefGoogle Scholar
  18. Pinheiro, S., Lima, M.B., GonÇalves, C.B. S.S., Pedraza, S. F., & de Farias, F. M. C. (2000) Control of diasteroselectivity in the aldolization of methyl phenylacetate. Tetrahedron Letters, 41, 4033–4034. DOI:  10.1016/s0040-4039(00)00582-7.CrossRefGoogle Scholar
  19. Reeve, W., Erikson, C. M., & Aluotto, P. F. (1979) A new method for the determination of the relative acidities of alcohols in alcoholic solutions. The nucleophilicities and competitive reactivities of alkoxides and phenoxides. Canadian Journal of Chemistry, 57, 2747–2754. DOI:  10.1139/v79-444.CrossRefGoogle Scholar
  20. Schneekloth, J. S., Jr., Kim, J., & Sorensen, E. J. (2009) An interrupted Ugi reaction enables the preparation of substituted indoxyls and aminoindoles. Tetrahedron, 65, 3096–3101. DOI:  10.1016/j.tet.2008.08.055.CrossRefGoogle Scholar
  21. Škerget, S., Knez, Ž., & Knez-Hrnčič, M. (2011) Solubility of solids in sub- and supercritical fluids: a review. Journal of Chemical & Engineering Data, 56, 694–719. DOI:  10.1021/je1011373.CrossRefGoogle Scholar
  22. Song, E. S., Lim, J. W., Lee, H. S., & Lee, Y. W. (2008) Transesterification of RBD palm oil using supercritical methanol. Journal of Supercritical Fluids, 44, 356–363. DOI:  10.1016/j.supflu.2007.09.010.CrossRefGoogle Scholar
  23. Vieitez, I., da Silva, C., Alckmin, I., Borges, G. R., Corazza, F. C., Oliveira, J. V., Grompone, M. A., & Jachmanián, I. (2010) Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures. Renewable Energy, 35, 1976–1981. DOI:  10.1016/j.renene.2010.01.027.CrossRefGoogle Scholar
  24. Trivedi, V., Bhomia, R., Mitchell, J. C., Coleman, N. J., Douroumis, D., & Snowden, M. J. (2013) Study of the effect of pressure on melting behavior of saturated fatty acids in liquid or supercritical carbon dioxide. Journal of Chemical & Engineering Data, 58, 1861–1866. DOI:  10.1021/je400260c.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Zhi-Qiang Hou
    • 1
  • Rui-Zhe Zhang
    • 1
  • Li-Gang Luo
    • 1
  • Jing Yang
    • 1
  • Chun-Ze Liu
    • 1
  • Yuan-Yuan Wang
    • 1
  • Li-Yi Dai
    • 1
  1. 1.Department of ChemistryEast China Normal UniversityShanghaiChina

Personalised recommendations