Skip to main content

Advertisement

Log in

Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The thickness shear mode acoustic method was used to study the binding of thrombin to DNA aptamers immobilised on the gold surface covered by DNA tetrahedrons. The binding of thrombin to conventional aptamers sensitive to fibrinogen (FBT) and heparin (HPT) exosites as well as to HPT in a loop configuration (HPTloop) made it possible to determine the constant of dissociation (KD) and the limit of detection (LOD). The sensing system composed of a HPTloop was characterised by KD = (66.7 ± 22.7) nM, which was almost twice as low as that of FBT and HPT. For this biosensor, a lower LOD of 5.2 nM compared with 17 nM for conventional HPT aptamers was also obtained. Less sensitive sensors based on FBT aptamers revealed an LOD of 30 nM which is in agreement with the lower affinity of these aptamers to thrombin in comparison with that of HPT. The surface concentration of DNA tetrahedrons was determined by the electrochemical method using [Ru(NH3)6]3+ as a redox probe. These experiments confirmed that the “step by step” method of forming the sensing layer, consisting first in chemisorption of DNA tetrahedrons onto a gold surface and then in hybridisation of the aptamer-supporting part with complementary oligos at the top of the tetrahedron, is preferable. In addition, atomic force microscopy was applied to analyse the topography of the gold layers modified stepwise by DNA tetrahedrons, DNA aptamers and thrombin. The height profiles of the layers were in reasonable agreement with the dimensions of the adsorbed molecules. The results indicate that DNA tetrahedrons represent an efficient platform for immobilisation of aptamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abi, A., Lin, M. H., Pei, H., Fan, C. H., Ferapontova, E. E., & Zuo, X. L. (2014). Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Applied Materials & Interfaces, 6, 8928–8931. DOI: 10.1021/am501823q.

    Article  CAS  Google Scholar 

  • Aldaye, A. F., Palmer, A. L., & Sleiman, H. F. (2008). Assembling materials with DNA as the guide. Science, 321, 1795–1799. DOI: 10.111126/science.1154533.

    Article  CAS  Google Scholar 

  • Blanchard, C. R. (1996). Atomic force microscopy. The Chemical Educator, 1, 1–8. DOI: 10.1007/s00897960059a.

    Article  Google Scholar 

  • Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E.H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355, 564–566. DOI: 10.1038/355564a0.

    Article  CAS  Google Scholar 

  • Brummel-Ziedins, K. E., Vossen, C. Y., Butenas, S., Mann, K. G., & Rosendaal, F. R. (2005). Thrombin generation profiles in deep venous thrombosis. Journal of Thrombosis Haemostasis, 3, 2497–2505. DOI: 10.1111/j.1538-7836.2005.01584.x.

    Article  CAS  Google Scholar 

  • Castro, C. E., Kilchherr, F., Kim, D. N., Shiao, E. L., Wauer, T., Wortmann, P., Bathe, M., & Dietz, H. (2011). A primer to scaffolded DNA origami. Nature Methods, 8, 221–229. DOI: 10.1038/nmeth.1570.

    Article  CAS  Google Scholar 

  • Cavendish, J. J., Fugit, R. V., & Safani, M. (2004). Role of antiplatelet theraphy in cardiovascular disease I: acute coronary synndromes. Current Medical Research and Opinion, 20, 1839–1843. DOI: 10.1185/030079904x10665.

    Article  Google Scholar 

  • Cavic, B. A., & Thompson, M. (2002). Interfacial nucleic acid chemistry studied by acoustic shear wave propagation. Analytica Chimica Acta, 469, 101–113. DOI: 10.1016/s0003-2670(01)01565-3.

    Article  CAS  Google Scholar 

  • Chechik, V., & Stirling, C. J. M. (1999). Gold-thiol self-assembled monolayers. In S. Patai, & Z. Rapport (Eds.), The chemistry of organic derivates of gold and silver (pp. 551–639). Hoboken, NJ, USA: Wiley.

    Chapter  Google Scholar 

  • Chen, Q., Tang, W., Wang, D. Z., Wu, X. J., Li, N., & Liu, F. (2010). Amplified QCM-D biosensor for protein based on aptamer functionalized gold nanoparticles. Biosensors and Bioelectronics, 26, 575–579. DOI: 10.1016/j.bios.2010.07.034.

    Article  CAS  Google Scholar 

  • Chou, S. H., Chin, K. H., & Wang, A. H. J. (2005). DNA aptamers as potential anti-HIV agents. Trends in Biochemical Sciences, 30, 231–234. DOI: 10.1016/j.tibs.2005.03.004.

    Article  CAS  Google Scholar 

  • Ellis, J. S., & Thompson, M. (2004). Acoustic coupling at multiple interfaces and the liquid phase response of the thickness shear-mode acoustic wave sensor. Chemical Communications, 2004, 1310–1311. DOI: 10.1039/b402822h.

    Article  Google Scholar 

  • Engel, A., & Müller, D. J. (2000). Observing single biomolecules at work with the atomic force microscope. Nature Structural & Molecular Biology, 7, 715–718. DOI: 10.1038/78929.

    Article  CAS  Google Scholar 

  • Finklea, H. O. (2000). Self-assembled monolayers on electrodes. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry: Instrumentation and applications (pp. 1–26). New York, NY, USA: Wiley.

    Google Scholar 

  • Fuentes-Prior, P., Iwanaga, Y., Huber, R., Pagila, R., Rumennik, G., Seto, M., Morser, J., Light, D.R., & Bode, W. (2004). Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature, 404, 518–525. DOI: 10.1038/35006683.

    Article  Google Scholar 

  • Ge, B. X., Huang, Y. C., Sen, D., & Yu, H. Z. (2007). Electrochemical investigation of DNA-modified surfaces: From quantitation methods to experimental conditions. Journal of Electroanalytical Chemistry, 602, 156–162. DOI: 10.1016/j.jelechem.2006.12.008.

    Article  CAS  Google Scholar 

  • Gooding, J. J., Erokhin, P., Losic, D., Yang, W., Policarpio, V., Liu, J. G., Ho, F. M., Situmorang, M., Hibbert, D. B., & Shapter, J. G. (2001). Parameters important in fabricating enzyme electrodes using self-assembled monolayers of alkanethiols. Analytical Sciences, 17, 3–9. DOI: 10.2116/analsci.17.3.

    Article  CAS  Google Scholar 

  • Goodman, R. P., Berry, R. M., & Turberfield, A. J. (2004). The single-step synthesis of a DNA tetrahedron. Chemical Communications, 2004, 1372–1373. DOI: 10.1039/b402293a.

    Article  Google Scholar 

  • Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C. M., Berry, R. M., Schmidt, C. F., & Turberfield, A.J. (2005). Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 310, 1661–1665. DOI: 10.1126/science.1120367.

    Article  CAS  Google Scholar 

  • Hamaguchi, N., Ellington, A., & Stanton, M. (2001). Aptamer beacons for the direct detection of protein. Analytical Biochemistry, 294, 126–131. DOI: 10.1006/abio.2001.5169.

    Article  CAS  Google Scholar 

  • Hasegawa, H., Taira, K. I., Sode, K., & Ikebukuro, K. (2008). Improvement of aptamer affinity by dimerization. Sensors, 8, 1090–1098. DOI: 10.3390/s8021090.

    Article  CAS  Google Scholar 

  • Hianik, T., Ostatná, V., Zajacová, Z., Stoikova, E., & Evtugyn, G. (2005). Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorganic & Medicinal Chemistry Letters, 15, 291–295. DOI: 10.1016/j.bmcl.2004.10.083.

    Article  CAS  Google Scholar 

  • Hianik, T., & Wang, J. (2009). Electrochemical aptasensors — recent achievements and perspectives. Electroanalysis, 21, 1223–1225. DOI: 10.1002/elan.200904566.

    Article  CAS  Google Scholar 

  • Hianik, T., Grman, I., & Karpisova, I. (2009). The effect of DNA aptamer configuration on the sensitivity of thrombin detection surface by acoustic method. Chemical Communications, 2009, 6303–6305. DOI: 10.1039/b910981a.

    Article  Google Scholar 

  • Hinterdorfer, P., & Dufręne, Y. F. (2006). Detection and localization of single molecular recognition events using atomic force microscopy Nature Methods, 3, 347–355. DOI: 10.1038/nmeth871.

    Article  CAS  Google Scholar 

  • Holland, C. A., Henry, A. T., Whinna, H. C., & Church, F. C. (2000). Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Letters, 484, 87–91. DOI: 10.1016/s0014-5793(00)02131-1.

    Article  CAS  Google Scholar 

  • Homann, M., & Göringer, H. U. (1999). Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Research, 27, 2006–2014. DOI: 10.1093/nar/27.9.2006.

    Article  CAS  Google Scholar 

  • Huntington, J. A. (2005). Molecular recognition mechanisms of thrombin. Journal of Thrombosis and Haemostasis, 3, 1861–1872. DOI: 10.1111/j.1538-7836.2005.01363.x.

    Article  CAS  Google Scholar 

  • Jayasena, S. D. (1999). Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry, 45, 1628–1650.

    CAS  Google Scholar 

  • Karshikov, A., Bode, W., Tulinsky, A., & Stone, S. R. (1992). Electrostatic interactions in the association of proteins: An analysis of the thrombin-hirudin complex. Protein Science, 1, 727–735. DOI: 10.1002/pro.5560010605.

    Article  CAS  Google Scholar 

  • Khulbe, K. C., Feng, C. Y., & Matsuura, T. (2008). Synthetic polymer membranes: characterization by atomic force microscopy. Heidelberg, Gemany: Springer. DOI: 10.1007/978-3-540-73994-4_6.

    Google Scholar 

  • Kotia, R. B., Li, L., & McGown, L. B. (2000). Separation of nontarget compounds by DNA aptamers. Analytical Chemistry, 72, 827–831. DOI: 10.1021/ac991112f.

    Article  CAS  Google Scholar 

  • Krauss, I. R., Merlino, A., Vergara, A., & Sica, F. (2013). An overview of biological macromolecule crystallization. International Journal of Molecular Sciences, 14, 11643–11691. DOI: 10.3390/ijms140611643.

    Article  Google Scholar 

  • Lao, R. J., Song, S. P., Wu, H. P., Wang, L. H., Zhang, Z. Z., He, L., & Fan, C. H. (2005). Electrochemical interrogation of DNA monolayers on gold surfaces. Analytical Chemistry, 77, 6475–6480. DOI: 10.1021/ac050911x.

    Article  CAS  Google Scholar 

  • Lao, Y. H., Peck, K., & Chen, L. C. (2009). Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Analytical Chemistry, 81, 1747–1754. DOI: 10.1021/ac801285a.

    Article  CAS  Google Scholar 

  • Leitner, M., Mitchell, N., Kastner, M., Schlapak, R., Gruber, H. J., Hinterdorfer, P., Howorka, S., & Ebner, A. (2011). Single-molecule AFM characterization of individual chemically tagged DNA tetrahedra. ACS Nano, 5, 7048–7054. DOI: 10.1021/nn201705p.

    Article  CAS  Google Scholar 

  • Leva, S., Lichte, A., Burmeister, J., Muhn, P., Jahnke, B., Fesser, D., Erfurth, J., Burgstaller, P., & Klussmann, S. (2002). GnRH binding RNA and DNA spiegelmers: A novel approach toward GnRH antagonism. Chemistry & Biology, 9, 351–359. DOI: 10.1016/s1074-5521(02)00111-4.

    Article  CAS  Google Scholar 

  • Liss, M., Petersen, B., Wolf, H., & Prohaska, E. (2002). An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 74, 4488–4495. DOI: 10.1021/ac011294p.

    Article  CAS  Google Scholar 

  • Luzi, E., Minunni, M., Tombelli, S., & Mascini, M. (2003). New trends in affinity sensing aptamers for ligand binding. TrAC Trends in Analytical Chemistry, 22, 810–818. DOI: 10.1016/s0165-9936(03)01208-1.

    Article  CAS  Google Scholar 

  • Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A., & Feigon, J. (1993). Thrombin binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proceedings of the National Academy of Sciences of the United States of America, 90, 3745–3749. DOI: 10.1073/pnas.90.8.3745.

    Article  CAS  Google Scholar 

  • Marson, G., Palumbo, M., & Sissi, C. (2012). Folding versus charge: understanding selective target recognition by the thrombin aptamers. Current Pharmaceutical Design, 18, 2027–2035. DOI: 10.2174/138161212799958323.

    Article  CAS  Google Scholar 

  • Mayer, G., Müller, J., Mack, T., Freitag, D. F., Höver, T., Pötzsch, B., & Heckel, A. (2009). Differential regulation of protein subdomain activity with caged bivalent ligands. Chembiochem, 10, 654–657. DOI: 10.1002/cbic.200800814.

    Article  CAS  Google Scholar 

  • Miodek, A., Poturnayová, A., Šnejdárková, M., Hianik, T., & Korri-Youssoufi, H. (2013). Binding kinetics of human cellular prions detection by DNA aptamers immobilized on a conducting polypyrrole. Analytical and Bioanalytical Chemistry, 405, 2505–2514. DOI: 10.1007/s00216-012-6665-4.

    Article  CAS  Google Scholar 

  • Mitchell, N., Schlapak, R., Kastner, M., Armitage, D., Chrzanowski, W., Riener, J., Hinterdorfer, P., Ebner, A., & Howorka, S. (2009). A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry. Angewandte Chemie, 121, 533–535. DOI: 10.1002/ange.200804264.

    Article  Google Scholar 

  • Murphy, M.C., Rasnik, I., Cheng, W., Lohman, T.M., & Ha, T. (2004). Probing single stranded DNA conformational flexibility using fluorescence spectroscopy. Biophysical Journal, 86, 2530–2537. DOI: 10.1016/s0006-3495(04)74308-8.

    Article  CAS  Google Scholar 

  • Nečas, D., & Klapetek, P. (2012). Gwyddion: an open-source software for SPM data analysis. Central European Journal of Physics, 10, 181–188. DOI: 10.2478/s11534-011-0096-2.

    Google Scholar 

  • Neidle, S. (2002). Nucleic acid structure and recognition. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Olson, W. K. (1975). Configurational statistics of polynucleotide chains. A single virtual bond treatment. Macromolecules, 8, 272–275. DOI: 10.1021/ma60045a006.

    Article  CAS  Google Scholar 

  • Park, B. W., Yoon, D. Y., & Kim, D. S. (2011). Formation and modification of a binary self-assembled mono-layer on a nano-structured gold electrode and its structural characterization by electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 661, 329–335. DOI: 10.1016/j.jelechem.2011.08.013.

    Article  CAS  Google Scholar 

  • Pei, H., Lu, N., Wen, Y., Song, S., Liu, Y., Yan, H., & Fan, C.H. (2010). A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Advanced Materials, 22, 4754–4758. DOI: 10.1002/adma.201002767.

    Article  CAS  Google Scholar 

  • Pérez-Luna, V. H., O’Brien, M. J., Opperman, K. A., Hampton, P. D., López, G. P., Klumb, L. A., & Stayton, P. S. (1999). Molecular recognition between genetically engineered streptavidin and surface-bound biotin. Journal of the American Chemical Society, 121, 6469–6478. DOI: 10.1021/ja983984p.

    Article  Google Scholar 

  • Poirier, G. E., & Pylant, E. D. (1996). The self-assembly mechanism of alkanethiols on Au(111). Science, 272, 1145–1148. DOI: 10.1126/science.272.5265.1145.

    Article  CAS  Google Scholar 

  • Poniková, S., Antalík, M., & Hianik, T. (2008). A circular dichroism study of the stability of guanine quadruplexes of thrombin DNA aptamers at presence of K+ and Na+ ions. General Physiology and Biophysics, 27, 271–277.

    Google Scholar 

  • Porschewski, P., Grättinger, M. A. M., Klenzke, K., Erpenbach, A., Blind, M. R., & Schäfer, F. (2006). Using aptamers as capture reagents in bead-based assay system for diagnostics and hit identification. Journal of Biomolecular Screening, 390, 773–781. DOI: 10.1177/1087057106292138.

    Article  Google Scholar 

  • Poturnayová, A., Šnejdárková, M., & Hianik, T. (2012). DNA aptamer configuration affects the sensitivity and binding kinetics of thrombin. Acta Chimica Slovaca, 5, 53–58. DOI: 10.2478/v10188-012-0009-z.

    Article  Google Scholar 

  • Pricso, D. (1990). Markers of increased thrombin generation. Research in Clinic and Laboratory, 20, 217–225. DOI: 10.1007/bf02900706.

    Google Scholar 

  • Proske, D., Blank, M., Buhmann, R., & Resch, A. (2005). Aptamers—basic research, drug development and clinical application. Applied Microbiology and Biotechnology, 69, 367–374. DOI: 10.1007/s00253-005-0193-5.

    Article  CAS  Google Scholar 

  • Rajendran, M., & Ellington, A. D. (2008). Selection of fluorescent aptamer beacons that light up in the presence of zinc. Analytical and Bioanalytical Chemistry, 390, 1067–1075. DOI: 10.1007/s00216-007-1735-8.

    Article  CAS  Google Scholar 

  • Saenger, W. (1984). Principles of nucleic acid structure. New York, NY, USA: Springer.

    Book  Google Scholar 

  • Schlapak, R., Danzberger, J., Armitage, D., Morgan, D., Ebner, A., Hinterdorfer, P., Pollheimer, P., Gruber, H. J., Schäffler, F., & Howorka, S. (2012). Nanoscale DNA tetrahedra improve biomolecular recognition on patterned surfaces. Small, 8, 89–97. DOI: 10.1002/smll.201101576.

    Article  CAS  Google Scholar 

  • Shangguan, D., Li, Y., Tang, Z. W., Cao, Z. C., Chen, H. W., Mallikaratchy, P., Sefah, K., Yang, C. J., & Tan, W. H. (2006). Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Sciences of the United States of America, 103, 11838–11843. DOI: 10.1073/pnas.0602615103.

    Article  CAS  Google Scholar 

  • Shuman, M. A., & Majerus, P. W. (1976). The measurement of thrombin in clotting blood by radioimmunoassay. Journal of Clinical Investigation, 58, 1249–1258. DOI: 10.1172/jci108579.

    Article  CAS  Google Scholar 

  • Šnejdárková, M., Svobodová, L., Polohová, V., & Hianik, T. (2008). The study of surface properties of an IgE-sensitive aptasensor using an acoustic method. Analytical and Bioanalytical Chemistry, 390, 1087–1091. DOI: 10.1007/s00216-007-1749-2.

    Article  Google Scholar 

  • Stobiecka, M., & Hepel, M. (2010). Rapid functionalization of metal nanoparticles by moderator-tunable ligand-exchange process for biosensor design. Sensor and Actuators B: Chemical, 149, 373–380. DOI: 10.1016/j.snb.2010.06.049.

    Article  CAS  Google Scholar 

  • Stubbs, M. T., & Bode, W. (1995). The clot thickens: clues provided by thrombin structure. Trends in Biochemical Sciences, 20, 23–28. DOI: 10.1016/s0968-0004(00)88945-8.

    Article  CAS  Google Scholar 

  • Tasset, D. M., Kubik, M. F., & Steiner, W. (1997). Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of Molecular Biology, 272, 688–698. DOI: 10.1006/jmbi.1997.1275.

    Article  CAS  Google Scholar 

  • Truong, K. D., & Rowntree, P. A. (1996). Formation of self-assembled butanethiol monolayers on Au substrates: Spectroscopic evidence for highly ordered island formation in submonolayer films. Journal of Physical Chemistry, 100, 19917–19926. DOI: 10.1021/jp953221d.

    Article  CAS  Google Scholar 

  • Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510. DOI: 10.1126/science.2200121.

    Article  CAS  Google Scholar 

  • Viglasky, V., & Hianik, T. (2013). Potential uses of G-quadruplex-forming aptamers. General Physiology and Biophysics, 32, 149–172. DOI: 10.4149/gpb_2013019.

    Article  CAS  Google Scholar 

  • Wang, J. (2006). Analytical electrochemistry. New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Wen, Y. L., Pei, H., Shen, Y., Xi, J. J., Lin, M. H., Lu, N., Shen, X. Z., Li, J., & Fan, C. H. (2012). DNA nanostructure-based interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Scientific Reports, 2, 867. DOI: 10.1038/srep00867.

    Article  Google Scholar 

  • Woodward, J. T., & Schwartz, D. K. (1996). In situ observation of self-assembled monolayer growth. Journal of the American Chemical Society, 118, 786–7862. DOI: 10.1021/ja961524v.

    Google Scholar 

  • Xu, Y., Ishizuka, T., Kurabayashi, K., & Komiyama, M. (2009). Consecutive formation of G-quadruplexes in human telomeric overhang DNA: A protective capping structure for telomere ends. Angewandte Chemie, 121, 7973–7976. DOI: 10.1002/ange.200903858.

    Article  Google Scholar 

  • Yamada, R., & Uosaki, K. (1997). In situ, real time monitoring of the self-assembly process of decanethiol on Au(111) in liquid phase. A scanning tunneling microscopy investigation. Langmuir, 13, 5218–5221. DOI: 10.1021/la970418j.

    Article  CAS  Google Scholar 

  • Yang, X.J., Bing, T., Mei, H.C., Fang, C.L., Cao, Z.H., & Shangguan, D. (2011). Characterization and application of a DNA aptamer binding to l-tryptophan. Analyst, 136, 577–585. DOI: 10.1039/c0an00550a.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Hianik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poturnayová, A., Šnejdárková, M., Castillo, G. et al. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform. Chem. Pap. 69, 211–226 (2015). https://doi.org/10.1515/chempap-2015-0044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0044

Keywords

Navigation