Skip to main content
Log in

Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An efficient mixed reagent for direct synthesis of symmetrical carboxylic anhydrides from carboxylic acids has been prepared. Carboxylic acids are converted to anhydrides using triphenylphosphine/trichloroisocyanuric acid under mild reaction conditions at room temperature. Short reaction time, excellent yields of products, low cost, availability of reagents, simple experimental procedure, and easy work-up of the products are the main advantages of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adduci, J. M., & Ramirez, R. S. (1970) Anhydride formation with thionyl chloride. Organic Preparations and Procedures International, 2, 321–325. DOI: 10.1080/00304947009458638.

    Article  CAS  Google Scholar 

  • Akhlaghinia, B. (2004) Efficient conversion of tetrahydropyranyl (THP) ethers to their corresponding cyanides with triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone/n-Bu4NCN. Phosphorus, Sulfur, and Silicon and the Related Elements, 179, 1783–1786. DOI: 10.1080/10426500490466463.

    Article  CAS  Google Scholar 

  • Akhlaghinia, B., & Pourali, A. R. (2004) Novel and highly selective conversion of alcohols and thiols to alkyl nitrites with triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone/Bu4NNO2 system. Synthesis, 2004, 1747–1749. DOI: 10.1055/s-2004-829122.

    Article  Google Scholar 

  • Akhlaghinia, B. (2005a) Triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone in the presence of n-Bu4NN3 is a useful system for efficient conversion of tetrahydropyranyl (THP) ethers to their corresponding alkyl azides. Phosphorus, Sulfur, and Silicon and the Related Elements, 180, 1601–1604. DOI: 10.1080/104265090884292.

    Article  CAS  Google Scholar 

  • Akhlaghinia, B. (2005b) A new and convenient method of generating alkyl isocyanates from alcohols, thiols and trimethylsilyl ethers using triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone/Bu4NOCN. Synthesis, 2005, 1955–1958. DOI: 10.1055/s-2005-869906.

    Article  Google Scholar 

  • Akhlaghinia, B., & Samiei, S. (2009) Triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)/[n-Bu4N]OCN as a useful system for the efficient conversion of tetrahydropyranyl (THP) ethers to the corresponding alkyl isocyanates. Phosphorus, Sulfur, and Silicon and the Related Elements, 184, 2525–2529. DOI: 10.1080/10426500802508212.

    Article  CAS  Google Scholar 

  • Akhlaghinia, B., & Rouhi-Saadabad, H. (2013) Direct and facile synthesis of acyl azides from carboxylic acids using the trichloroisocyanuric acid-triphenylphosphine system. Canadian Journal of Chemistry, 91, 181–185. DOI: 10.1139/cjc-2011-0493.

    Article  CAS  Google Scholar 

  • Blankemeyer-Menge, B., Nimtz, M., & Frank, R. (1990) An efficient method for anchoring fmoc-anino acids to hydroxyl-functionalised solid supports. Tetrahedron Letters, 31, 1701–1704. DOI: 10.1016/s0040-4039(00)88858-9.

    Article  CAS  Google Scholar 

  • Brady, W. T., & O’Neal, H. R. (1967) Further studies on the mechanism of diphenylketene cycloaddition. Journal of Organic Chemistry, 32, 2704–2702. DOI: 10.1021/jo01284a013.

    Article  CAS  Google Scholar 

  • Bryson, T. A., & Roth, G. A., (1986) Synthetic studies directed at the B/C ring systems of CC-1065; preparation of substituted cyclopropyl indolenones. Tetrahedron Letters, 27, 3689–3692. DOI: 10.1016/s0040-4039(00)83854-x.

    Article  CAS  Google Scholar 

  • Burton, S. G., & Kaye, P. T. (1989) A convenient preparation of carboxylic acid anhydrides using a “supported” phosphorus pentoxide reagent. Synthetic Communications, 19, 3331–3335. DOI: 10.1080/00397918908052736.

    Article  CAS  Google Scholar 

  • Chen, F. M. F., & Benoiton, N. L. (1979) A general method for formylating sensitive amino acid esters. Synthesis, 1979, 709–710. DOI: 10.1055/s-1979-28805.

    Article  Google Scholar 

  • Edman, J. R., & Simmons, H. E. (1968) Bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylic anhydride. Journal of Organic Chemistry, 33, 3808–3816. DOI: 10.1021/jo01274a028.

    Article  CAS  Google Scholar 

  • Eglinton, G., & Jones, E. R. H., Shaw, B. L., & Whiting, M. C. (1954) Researches on acetylenic compounds. Part XLIII. A new method for the preparation of alkoxyacetylenes Journal of the Chemical Society, 1954, 1860–1865.

    Article  Google Scholar 

  • Exner, O., & Jehlicka, E. (1970) Dipole moments and conformation of carboxylic acid anhydrides. Collection of Czechoslovak Chemical Communications, 35, 1514–1521. DOI: 10.1135/cccc19701514.

    Article  CAS  Google Scholar 

  • Fife, W. K., & Zhang, Z. D. (1986) Phase managed organic synthesis 3. Symmetrical anhydrides from carboxylic acids via polymer assisted reaction. Tetrahedron Letters, 27, 4937–4940. DOI: 10.1016/s0040-4039(00)85101-1.

    Article  CAS  Google Scholar 

  • Fukuoka, S., Takimoto, S., Katsuki, T., & Yamaguchi, M. (1987) Activation of mixed carboxylic α-bromotoluoyl anhydrides by silver tetraflouroborate. Synthesis of ester and thiol esters. Tetrahedron Letters, 28, 4711–4712. DOI: 10.1016/s0040-4039(00)96605-x.

    Article  CAS  Google Scholar 

  • Funasaka, S., & Mukaiyama, T. (2008) A versatile, practical, and inexpensive reagent, pyridine-3-carboxylic anhydride (3-PCA), for condensation reactions. Bulletin of the Chemical Society of Japan, 81, 148–159. DOI: 10.1246/bcsj.81.148.

    Article  CAS  Google Scholar 

  • Hajipour, A. R., & Mazloumi, G. (2002) An efficient and simple procedure for preparation of esters and anhydrides from acid chlorides in the presence of 1,4-diazabicyclo[2.2.2]octane (dabco) under solvent-free conditions. Synthetic Communications, 32, 23–30. DOI: 10.1081/scc-120001504.

    Article  CAS  Google Scholar 

  • Hata, T., Tajima, K., & Mukaiyama, T. (1968) A convenient method for the preparation of acid anhydrides from metallic carboxylates. Bulletin of the Chemical Society of Japan, 41, 2746–2747. DOI: 10.1246/bcsj.41.2746.

    Article  CAS  Google Scholar 

  • Hiegel, G. A., Ramirez, J., & Barr, R. K. (1999) Chlorine substitution reactions using trichloroisocyanuric acid with triphenylphosphin. Synthetic Communications, 29, 1415–1419. DOI: 10.1080/00397919908086119.

    Article  CAS  Google Scholar 

  • Holzapfel, C. W., & Pettit, G. R. (1985) Antineoplastic agents. Part 108. Structural biochemistry. Part 23. Synthesis of the dolastatin thiazole amino acid component (gln)Thz. Journal of Organic Chemistry, 50, 2323–2327. DOI: 10.1021/jo00213a024.

    Article  CAS  Google Scholar 

  • Hu, Y. L., Wang, J. X., & Li, S. H. (1997) Synthesis of anhydrides fom acyl chlorides under ultrasound condition. Synthetic Communications, 27, 243–248. DOI: 10.1080/00397919708005024.

    Article  CAS  Google Scholar 

  • Hu, Y. L., Zhao, X. E., & Lu, M. (2011) Efficient and convenient synthesis of symmetrical carboxylic anhydrides from carboxylic acids with sulfated zirconia by phase transfer catalysis. Bulletin of the Chemical Society of Ethiopia, 25, 255–262. DOI: 10.4314/bcse.v25i2.65900.

    CAS  Google Scholar 

  • Hurd, C. D., & Thomas, C. L. (1933) The interaction of ketene with aromatic aldehydes and its bearing on the Perkin reaction. Journal of the American Chemical Society, 55, 275–283. DOI: 10.1021/ja01328a033.

    Article  CAS  Google Scholar 

  • Iranpoor, N., Firouzabadi, H., Akhlaghinia, B., & Azadi, R. (2004a) Conversion of alcohols, thiols, carboxylic acids, trimethylsilyl ethers, and carboxylates to thiocyanates with triphenylphosphine/diethylazodicarboxylate/NH4SCN. Synthesis, 2004, 92–96. DOI: 10.1055/s-2003-44369.

    Article  Google Scholar 

  • Iranpoor, N., Firouzabadi, H., Akhlaghinia, B., & Nowrouzi, N. (2004b) Conversion of alcohols, thiols, and trimethysilyl ethers to alkyl cyanides using triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone/n-Bu4NCN. Journal of Organic Chemistry, 69, 2562–2564. DOI: 10.1021/jo035238v.

    Article  CAS  Google Scholar 

  • Iranpoor, N., Firouzabadi, H., Akhlaghinia, B., & Nowrouzi, N. (2004c) A novel and highly selective conversion of alcohols, thiols, and silyl ethers to azides using the triphenylphosphine/2,3-dichloro-5,6-dicyanobenzoquinone(DDQ)/n-Bu4NN3 system. Tetrahedron Letters, 45, 3291–3294. DOI: 10.1016/j.tetlet.2004.02.141.

    Article  CAS  Google Scholar 

  • Iranpoor, N., Firouzabadi, H., Azadi, R., & Akhlaghinia, B. (2005) Highly selective conversion of 1° and 2° tetrahydropyranyl ethers to thiocyanates and 3° ones to isothiocyanates using triphenylphosphine/diethyl azodicarboxylate/NH4SCN. Journal of Sulfur Chemistry, 26, 133–137. DOI: 10.1080/17415990500135228.

    Article  CAS  Google Scholar 

  • Jenkins, J. A., & Cohen, J. (1975) Deuterium isotope effects and the influence of solvent in the redox and rearrangement reactions of 2-picoline N-oxide and phenylacetic anhydride. Journal of Organic Chemistry, 40, 3566–3571. DOI: 10.1021/jo00912a021.

    Article  CAS  Google Scholar 

  • Jorba, X., Albericio, F., Grandas, A., Bannwarth, W., & Giralt, E. (1990) Arenesulphonyltriazolides as condensing reagents in solid phasepeptide synthesis. Tetrahedron Letters, 31, 1915–1918. DOI: 10.1016/s0040-4039(90)80004-6.

    Article  CAS  Google Scholar 

  • Kamiński, Z. J., Kolesińska, B., & Marcinkowska, M. (2004) Mild and efficient synthesis of carboxylic acid anhydrides from carboxylic acids and triazine coupling reagents. Synthetic Communications, 34, 3349–3358. DOI: 10.1081/scc-200030581.

    Article  Google Scholar 

  • Karimi Zarchi, M. A., Mirjalili, B. F., Shamsi Kahrizsangi, Z., & Tayefi, M. (2010) A mild, clean, and simple synthesis of symmetrical carboxylic anhydrides from carboxylic acids using a polymer supported tosyl chloride. Journal of the Iranian Chemical Society, 7, 455–460. DOI: 10.1007/bf03246032.

    Article  Google Scholar 

  • Katritzky, A. R., Shobana, N., Pernak, J., Afridi, A. S., & Fan, W. Q. (1992) Sulfonyl derivatives of benzotriazole: Part 1. A novel approach to the activation of carboxylic acids. Tetrahedron, 48, 7817–7822. DOI: 10.1016/s0040-4020(01)80459-2.

    Article  CAS  Google Scholar 

  • Kazemi, F., & Kiasat, A. R. (2003) Dabco/SOCl2, mild, and convenient reagent for the preparation of symmetrical carboxylic acid anhydrides. Phosphorus, Sulfur, and Silicon and the Related Elements, 178, 2287–2291. DOI: 10.1080/713744563.

    Article  CAS  Google Scholar 

  • Kazemi, F., Sharghi, H., & Naseri, M. A. (2004) A cheap, simple and efficient method for the preparation of symmetrical carboxylic acid anhydrides. Synthesis, 2, 205–207. DOI: 10.1055/s-2003-44381.

    Google Scholar 

  • Kazemi, F., Kiasat, A. R., & Mombaini, B. (2007) Simple preparation of symmetrical carboxylic acid anhydrides by means of Na2CO3/SOCl2. Synthetic Communications, 37, 3219–3223. DOI: 10.1080/00397910701547904.

    Article  CAS  Google Scholar 

  • Keshavamurthy, K. S., Vankar, Y. D., & Dhar, D. N. (1982) Preparation of acid anhydrides, amides, and esters using chlorosulfonyl isocyanate as a dehydrating agent. Synthesis, 1982, 506–508. DOI: 10.1055/s-1982-29859.

    Article  Google Scholar 

  • Kiani, A., Akhlaghinia, B., Rouhi-Saadabad, H., & Bakavoli, M. (2014) Direct synthesis of sulfonyl azides from sulfonic acids. Journal of Sulfur Chemistry, 35, 119–127. DOI: 10.1080/17415993.2013.801476.

    Article  CAS  Google Scholar 

  • Kim, J. G., & Jang, D. O. (2001) A convenient method for synthesis of symmetrical acid anhydrides from carboxylic acids with trichloroacetonitrile and triphenylphosphine. Synthetic Communications, 31, 395–399. DOI: 10.1081/scc-100000529.

    Article  CAS  Google Scholar 

  • Kim, J. J., Park, Y. D., Lee, W.S., Cho, S. D., & Yoon, Y. J. (2003) Facile synthesis of carboxylic anhydrides using 4,5-dichloro-2-[(4-nitrophenyl)sulfonyl]pyridazin-3(2H)-one. Synthesis, 10, 1517–1520. DOI: 10.1055/s-2003-40512.

    Google Scholar 

  • Kim, J. G., & Jang, D. O. (2009) Synthesis of symmetrical carboxylic acid anhydrides from acyl chlorides in the presence of in metal and DMF. Bulletin of the Korean Chemical Society, 30, 27–28. DOI: 10.5012/bkcs.2009.30.1.027.

    Article  CAS  Google Scholar 

  • Kimura, Y., Matsuura, D., Hanawa, T., & Kobayashi, Y. (2012) New preparation method for Vilsmeier reagent and related imidoyl chlorides. Tetrahedron Letters, 53, 1116–1118. DOI: 10.1016/j.tetlet.2011.12.087.

    Article  CAS  Google Scholar 

  • Kita, Y., Akai, S., Yoshigi, M., Nakajima, Y., Yasuda, H., & Tamura, Y. (1984) A mild and facile synthesis of carboxylic anhydrides. Tetrahedron Letters, 25, 6027–6030. DOI: 10.1016/s0040-4039(01)81751-2.

    Article  CAS  Google Scholar 

  • Kita, Y., Akai, S., Ajimura, N., Yoshigi, M., Tsugoshi, T., Yasuda, H., & Tamura, Y. (1986) Facile and efficient syntheses of carboxylic anhydrides and amides using (trimethylsilyl)ethoxyacetylene. Journal of Organic Chemistry, 51, 4150–5158. DOI: 10.1021/jo00372a010.

    Article  CAS  Google Scholar 

  • Kocz, R., Roestamadi, J., & Mobashery, S. (1994) A convenient triphosgene-mediated synthesis of symmetric carboxylic acid anhydrides. Journal of Organic Chemistry, 59, 2913–2914. DOI: 10.1021/jo00089a046.

    Article  CAS  Google Scholar 

  • Liesen, G. P., & Sukenik, C. N. (1987) Activated anhydrides of tartaric and malic acids. Journal of Organic Chemistry, 52, 455–457. DOI: 10.1021/jo00379a030.

    Article  CAS  Google Scholar 

  • Mariella, R. P., & Brown, K. H. (1971) A novel SN1 displacement: The reaction of tertiary amines with acetic anhydride. Canadian Journal of Chemistry, 49, 3348–3351. DOI: 10.1139/v71-557.

    Article  CAS  Google Scholar 

  • Meienhofer, J., & Gross, E. (1979) The peptides: Analysis, synthesis and biology. Waltham, MA, USA: Academic Press.

    Google Scholar 

  • Mestres, R., & Palomo, C. (1981) Phosphorus in organic chemistry; I. Mild and convenient reagents for the preparation of symmetrical carboxylic acid anhydrides. Synthesis, 1981, 218–220. DOI: 10.1055/s-1981-29391.

    Article  Google Scholar 

  • Newman, M. S., & Louge, M. W. (1971) Synthesis of 6,6′-diethynyldiphenic anhydride. Journal of Organic Chemistry, 36, 1398–1401. DOI: 10.1021/jo00809a018.

    Article  CAS  Google Scholar 

  • Ogliaruso, M. A., & Wolfe, J. F. (1991) Synthesis of carboxylic acids, esters and their derivatives. New York, NY, USA: Wiley.

    Book  Google Scholar 

  • Park, Y.D., Kim, J.J., Kim, H.K., Cho, S.D., Kang, Y. J., Park, K. H., Lee, S. G., & Yoon, Y. J. (2005) ZnCl2-mediated synthesis of carboxylic anhydrides using 2-acyl-4,5-dichloropyridazin-3(2H)-ones. Synthetic Communications, 35, 371–378. DOI: 10.1081/scc-200048939.

    Article  CAS  Google Scholar 

  • Rambacher, P., & Mäke, S. (1968) Simplified process for preparation of anhydrides of aromatic acids. Angewandte Chemie International Edition, 7, 465. DOI: 10.1002/anie.196804651.

    Article  CAS  Google Scholar 

  • Rammler, D. H., & Khorana, H. G. (1963) Studies on polynucleotides. XX.1 Amino acid acceptor ribonucleic acids (1). The synthesis and properties of 2″ (or 3″)-O-(DL-phenylalanyl)-adenosine, 2″ (or 3″)-O-(DL-phenylalanyl)-uridine and related compounds. Journal of the American Chemical Society, 85, 1997–2002. DOI: 10.1021/ja00896a020.

    Article  Google Scholar 

  • Rinderknecht, H., & Ma, V. (1964) Eine einfache neue Synthese für Säureanhydride. Helvetica Chimica Acta, 47, 162–165. DOI: 10.1002/hlca.19640470121. (in German)

    Article  CAS  Google Scholar 

  • Rinderknecht, H., & Guteinstein, M. (1967) Nicotinic anhydride. Organic Syntheses, 47, 89. DOI: 10.15227/orgsyn.047.0089.

    Article  CAS  Google Scholar 

  • Roof, A. A. M., van-Woerden, H. F., & Cerfontain, H. (1976) The photochemistry of α-aryl carboxylic anhydrides—II: Photolysis of some substituted phenylacetic anhydrides Tetrahedron, 32, 2967–2971. DOI: 10.1016/0040-4020(76)80154-8.

    Article  CAS  Google Scholar 

  • Rosowsky, A., Bader, H., Cucchi, C.A., Moran, R.G., Kohler, W., & Freisheim, J. H. (1988) Methotrexate analogs. 33. N.delta.-acyl-N.alpha.-(4-amino-4-deoxypteroyl)-L-ornithine derivatives. Synthesis and in vitro antitumor activity. Journal of Medicinal Chemistry, 31, 1332–1337. DOI: 10.1021/jm00402a013.

    Article  CAS  Google Scholar 

  • Rouhi-Saadabad, H., & Akhlaghinia, B. (2014) Direct, rapid and convenient synthesis of esters and thioesters using PPh3/N-chlorobenzotriazole system. Journal of the Brazilian Chemical Society, 25, 253–263. DOI: 10.5935/0103-5053.20130291.

    CAS  Google Scholar 

  • Sandler, S. R., & Karo, W. (1972) Organic functional group preparations. Waltham, MA, USA: Academic Press.

    Google Scholar 

  • Serieys, A., Botuha, C., Chemla, F., Ferreira, F., & Pérez-Luna, A. (2008) Zinc(0)/dimethylformamide-mediated synthesis of symmetrical carboxylic anhydrides from acid chlorides. Tetrahedron Letters, 49, 5322–5323. DOI: 10.1016/j.tetlet.2008.06.073.

    Article  CAS  Google Scholar 

  • Shambhu, M. B., & Digenis, G. A. (1974) Insoluble resins with mixed carbonic-carboxylic anhydride functions. Preparation and applications as mild selective acylating reagents. Journal of the Chemical Society, Chemical Communications, 1974, 619–620. DOI: 10.1039/c39740000619.

    Article  Google Scholar 

  • Sonntag, N. O. V., Trowbridge, J. R., & Krems, I. J. (1954) Reactions of fatty acid chlorides. I. Preparation of fatty acid anhydrides. Journal of the American Oil Chemists’ Society, 31, 151–157. DOI: 10.1007/bf02545703.

    Article  CAS  Google Scholar 

  • Sugimoto, O., & Tanji, K. I. (2005) An improved method for chlorination of nitrogen-containing π-deficient heteroaromatics using triphenylphosphine and trichloroisocyanuric acid. Heterocycles, 65, 181–185. DOI: 10.3987/com-04-10245.

    Article  CAS  Google Scholar 

  • Sugimoto, O., Harada, Y., & Tanji, K. I. (2012) Phosphonium chloride as a non-volatile chlorinating reagent: preparation and reaction in no solvent or ionic liquid. Heterocycles, 86, 1583–1590. DOI: 10.3987/com-12-s(n)105.

    Article  CAS  Google Scholar 

  • Tachibana, Y., Kawasaki, H., Kihara, N., & Takata, T. (2006) Sequential O-and N-acylation protocol for high-yield preparation and modification of rotaxanes: Synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. Journal of Organic Chemistry, 71, 5093–5104. DOI: 10.1021/jo0601563.

    Article  CAS  Google Scholar 

  • Tamura, Y., Kirihara, M., Sasho, M., Akai, S., Sekihachi, J., Okunaka, R., & Kita, Y. (1987a) Total synthesis of a D-ring indole analogue of daunomycin. Journal ofthe Chemical Society, Chemical Communications, 1987, 1474–1476. DOI: 10.1039/c39870001474.

    Article  Google Scholar 

  • Tamura, Y., Kirihara, M., Sekihachi, J. I., Okunaka, R., Mohri, S. I., Tsugoshi, T., Akai, S., Sasho, M., & Kita, Y. (1987b) A new synthetic strategy for heteroanthracyclines: Total synthesis of D-ring thiophene analogs of daunomycin. Tetrahedron Letters, 28, 3971–3974. DOI: 10.1016/s0040-4039(00)96434-7.

    Article  CAS  Google Scholar 

  • Tarbel, D. S. (1969) Carboxylic carbonic anhydrides and related compounds. Accounts of Chemical Research, 2, 296–300. DOI: 10.1021/ar50022a002.

    Article  Google Scholar 

  • Wallace, J. M., Jr., & Copenhaver, J. E. (1941) Anhydrides of the normal aliphatic saturated monobasic acids. Journal of the American Chemical Society, 63, 699–700. DOI: 10.1021/ja01848a017.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batool Akhlaghinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi-Saadabad, H., Akhlaghinia, B. Facile and direct synthesis of symmetrical acid anhydrides using a newly prepared powerful and efficient mixed reagent. Chem. Pap. 69, 479–485 (2015). https://doi.org/10.1515/chempap-2015-0042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0042

Keywords

Navigation