Chemical Papers

, Volume 69, Issue 1, pp 27–41 | Cite as

Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells

  • Aniko Bertokova
  • Tomas Bertok
  • Jaroslav Filip
  • Jan Tkac


Gluconobacter oxydans bacteria exhibit a unique metabolism for quick and incomplete oxidation of a wide range of different compounds (aldoses, ketoses, mono- and poly-alcohols, etc.). Such biotransformation efficiency with simple biomass production led to the industrial applications of these bacteria in the production of several important commodities. Their respiratory activity can also be successfully studied and used in the field of bioelectrochemistry. The main aim of this review is to present various strategies to improve selectivity of assays using intact/treated cells of G. oxydans, to introduce the application of G. oxydans-based biosensors in selective monitoring of analytes during biotransformation processes and to provide information about utilizable sugars in fermentation media or in biological oxygen demand value determination. The final part of the review describes potential application of G. oxydans cells in the generation of electricity from complex fuels within microbial fuel cells by advanced direct electron transfer route between bacterial cells and electrodes.


Gluconobacter oxydans electrodes biosensors biofuel cells dehydrogenases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, O., Matsushita, K., Shinagawa, E., & Ameyama, M. (1980a). Crystallization and characterization of NADP-dependent D-glucose dehydrogenase from Gluconobacter suboxydans. Agricultural and Biological Chemistry, 44, 301–308.Google Scholar
  2. Adachi, O., Matsushita, K., Shinagawa, E., & Ameyama, M. (1980b). Crystallization and properties of NADP-dependent aldehyde dehydrogenase from Gluconobacter melanogenus. Agricultural and Biological Chemistry, 44, 155–164.Google Scholar
  3. Adachi, O., Tayama, K., Shinagawa, E., Matsushita, K., & Ameyama, M. (1980c). Purification and characterization of membrane-bound aldehyde dehydrogenase from Gluconobacter suboxydans. Agricultural and Biological Chemistry, 44, 503–515.Google Scholar
  4. Adachi, O., Ano, Y., Moonmangmee, D., Shinagawa, E., Toyama, H., Theeragool, G., Lotong, N., & Matsushita, K. (1999a). Crystallization and properties of NADPH-dependent L-sorbose reductase from Gluconobacter melanogenus IFO 3294. Bioscience, Biotechnology and Biochemistry, 63, 2137–2143. DOI:  10.1271/bbb.63.2137.CrossRefGoogle Scholar
  5. Adachi, O., Toyama, H., & Matsushita, K. (1999b). Crystalline NADP-dependent D-mannitol dehydrogenase from Gluconobacter suboxydans. Bioscience, Biotechnology, and Biochemistry, 63, 402–407. DOI:  10.1271/bbb.63.402.CrossRefGoogle Scholar
  6. Adachi, O., Toyama, H., Theeragool, G., Lotong, N., & Matsushita, K. (1999c). Crystallization and properties of NAD-dependent D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3257. Bioscience, Biotechnology, and Biochemistry, 63, 1589–1595. DOI:  10.1271/bbb.63.1589.CrossRefGoogle Scholar
  7. Alferov, S. V., Tomashevskaya, L. G., Ponamoreva, O. N., Bogdanovskaya, V. A., & Reshetilov, A. N. (2006). Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2,6-dichlorophenolindophenol as an electron transport mediator. Russian Journal of Electrochemistry, 42, 403–404. DOI:  10.1134/s1023193506040185.CrossRefGoogle Scholar
  8. Babkina, E., Chigrinova, E., Ponamoreva, O., Alferov, V., & Reshetilov, A. (2006). Bioelectrocatalytic oxidation of glucose by immobilized bacteria Gluconobacter oxydans. Evaluation of water-insoluble mediator efficiency. Electroanalysis, 18, 2023–2029. DOI:  10.1002/elan.200603608.CrossRefGoogle Scholar
  9. Bianco, A. (2013). Graphene: Safe or toxic? The two faces of the medal. Angewandte Chemie International Edition, 52, 4986–4997. DOI:  10.1002/anie.201209099.CrossRefGoogle Scholar
  10. Bilská, V. (1997). Využitie octových baktérií v biotechnologickom procese pri produkcii organických kyselín. Chemické Listy, 91, 483–486. (in Slovak)Google Scholar
  11. Bullen, R. A., Arnot, T. C., Lakeman, J. B., & Walsh, F. C. (2006). Biofuel cells and their development. Biosensors and Bioelectronics, 21, 2015–2045. DOI:  10.1016/j.bios.2006.01.030.CrossRefGoogle Scholar
  12. Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends in Biotechnology, 31, 20–28. DOI:  10.1016/j.tibtech.2012.10.006.CrossRefGoogle Scholar
  13. Corma, A., Iborra, S., & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 107, 2411–2502. DOI:  10.1021/cr050989d.CrossRefGoogle Scholar
  14. D’Souza, S. F. (2001). Microbial biosensors. Biosensors and Bioelectronics, 16, 337–353. DOI:  10.1016/s0956-5663(01)00125-7.CrossRefGoogle Scholar
  15. Damar, K., & Odaci Demirkol, D. (2011). Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing. Talanta, 87, 67–73. DOI:  10.1016/j.talanta.2011.09.042.CrossRefGoogle Scholar
  16. De Muynck, C., Pereira, C. S. S., Naessens, M., Parmentier, S., Soetaert, W., & Vandamme, E. J. (2007). The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. Critical Reviews in Biotechnology, 27, 147–171. DOI:  10.1080/07388550701503584.CrossRefGoogle Scholar
  17. Dębowski, M., Zieliński, M., Krzemieniewski, M., Rokicka, M., & Kupczyk, K. (2014). Effectiveness of dairy wastewater treatment in a bioreactor based on the integrated technology of activated sludge and hydrophyte system. Environmental Technology, 35, 1350–1357. DOI:  10.1080/09593330.2013.868528.CrossRefGoogle Scholar
  18. Deppenmeier, U., Hoffmeister, M., & Prust, C. (2002). Biochemistry and biotechnological applications of Gluconobacter strains. Applied Microbiology and Biotechnology, 60, 233–242. DOI:  10.1007/s00253-002-1114-5.CrossRefGoogle Scholar
  19. Deppenmeier, U., & Ehrenreich, A. (2009). Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology, 16, 69–80. DOI:  10.1159/000142895.CrossRefGoogle Scholar
  20. Filip, J., Šefčovičová, J., Gemeiner, P., & Tkac, J. (2013). Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochimica Acta, 87, 366–374. DOI:  10.1016/j.electacta.2012.09.054.CrossRefGoogle Scholar
  21. Filip, J., & Tkac, J. (2014). Is graphene worth using in biofuel cells? Electrochimica Acta, 136, 340–354. DOI:  10.1016/j.electacta.2014.05.119.CrossRefGoogle Scholar
  22. Filip, J., Kasák, P., & Tkac, J. (2015). Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors. Chemical Papers, 69, 112–133. DOI:  10.1515/chempap-2015-0051.CrossRefGoogle Scholar
  23. Gao, K. L., & Wei, D. Z. (2006). Asymmetric oxidation by Gluconobacter oxydans. Applied Microbiology and Biotechnology, 70, 135–139. DOI:  10.1007/s00253-005-0307-0.CrossRefGoogle Scholar
  24. García, J. I., García-Marín, H., & Pires, E. (2014). Glycerol based solvents: synthesis, properties and applications. Green Chemistry, 16, 1007–1033. DOI:  10.1039/c3gc41857j.CrossRefGoogle Scholar
  25. Goenka, S., Sant, V., & Sant, S. (2014). Graphene-based nano-materials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75–88. DOI:  10.1016/j.jconrel.2013.10.017.CrossRefGoogle Scholar
  26. Habib, O., Demirkol, D., & Timur, S. (2012). Sol-gel/chitosan/gold nanoparticle-modified electrode in mediated bacterial biosensor. Food Analytical Methods, 5, 188–194. DOI:  10.1007/s12161-011-9248-7.CrossRefGoogle Scholar
  27. Hölscher, T., & Görisch, H. (2006). Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of Bacteriology, 188, 7668–7676. DOI:  10.1128/jb.01009-06.CrossRefGoogle Scholar
  28. Hu, Z. C., Zheng, Y. G., & Shen, Y. C. (2011). Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Bioresource Technology, 102, 7177–7182. DOI:  10.1016/j.biortech.2011.04.078.CrossRefGoogle Scholar
  29. Ikeda, T., Kurosaki, T., Takayama, K., Kano, K., & Miki, K. (1996). Measurements of oxidoreductase-like activity of intact bacterial cells by an amperometric method using a membrane-coated electrode. Analytical Chemistry, 68, 192–198. DOI:  10.1021/ac950240a.CrossRefGoogle Scholar
  30. Ikeda, T., & Kano, K. (2003). Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochimica et Biophysica Acta (BBA) — Proteins and Proteomics, 1647, 121–126. DOI:  10.1016/s1570-9639(03)00075-x.CrossRefGoogle Scholar
  31. Indzhgiya, E. Y., Ponamoreva, O. N., Alferov, V. A., Reshetilov, A. N., & Gorton, L. (2012). Interaction of ferrocene mediators with Gluconobacter oxydans immobilized whole cells and membrane fractions in oxidation of ethanol. Electroanalysis, 24, 924–930. DOI:  10.1002/elan.201100425.CrossRefGoogle Scholar
  32. Kalathil, S., Khan, M. M., Lee, J. T., & Cho, M. H. (2013). Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnology Advances, 31, 915–924. DOI:  10.1016/j.biotechadv.2013.05.001.CrossRefGoogle Scholar
  33. Karthikeyan, R., Sathish kumar, K., Murugesan, M., Berchmans, S., & Yegnaraman, V. (2009). Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environmental Science & Technology, 43, 8684–8689. DOI:  10.1021/es901993y.CrossRefGoogle Scholar
  34. Katrlák, J., Voštiar, I., Šefčovičová, J., Tkáč, J., Mastihuba, V., Valach, M., Štefuca, V., & Gemeiner, P. (2007). A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Analytical and Bioanalytical Chemistry, 388, 287–295. DOI:  10.1007/s00216-007-1211-5.CrossRefGoogle Scholar
  35. Kersters, K., Wood, W. A., & De Ley, J. (1965). Polyol dehydrogenases of Gluconobacter oxydans. Journal of Biological Chemistry, 240, 965–974.Google Scholar
  36. Kim, S. R., Park, Y. C., Jin, Y. S., & Seo, J. H. (2013). Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 31, 851–861. DOI:  10.1016/j.biotechadv.2013.03.004.CrossRefGoogle Scholar
  37. Kitagawa, Y., Ameyama, M., Nakashima, K., Tamiya, E., & Karube, I. (1987). Amperometric alcohol sensor based on an immobilised bacteria cell membrane. Analyst, 112, 1747–1749. DOI:  10.1039/an9871201747.CrossRefGoogle Scholar
  38. Kovalenko, G. A., Tomashevskaya, L. G., Chuenko, T. V., Rudina, N. A., Perminova, L. V., & Reshetilov, A. N. (2011). Synthesis of catalytic filamentous carbon on a nickel/graphite catalyst and a study of the resulting carbon-carbon composite materials in microbial fuel cells. Kinetics and Catalysis, 52, 564–572. DOI:  10.1134/s0023158411040069.CrossRefGoogle Scholar
  39. Krajewski, V., Simić, P., Mouncey, N. J., Bringer, S., Sahm, H., & Bott, M. (2010). Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Applied and Environmental Microbiology, 76, 4369–4376. DOI:  10.1128/aem.03022-09.CrossRefGoogle Scholar
  40. Kretová, M., & Grones, J. (2005). Charakterizácia a identifikácia octových baktérií. Chemicke Listy, 99, 144–149. (in Slovak)Google Scholar
  41. Kubesa, O., Morrisey, K., Mathews, S., Proetta, J., Li, C., Skladal, P., & Hepel, M. (2014). Design of novel biosensors for determination of phenolic compounds using catalyst-loaded reduced graphene oxide electrodes. Mediterranean Journal of Chemistry, 3, 916–928. DOI:  10.13171/mjc.3.3.2014.14.06.12.CrossRefGoogle Scholar
  42. Kulhánek, M. (1989). Microbial dehydrogenations of monosaccharides. In L. N. Saul (Ed.), Advances in applied microbiology (Vol. 34, pp. 141–182). Waltham, MA, USA: Academic Press.Google Scholar
  43. Lee, S. A., Choi, Y. J., Jung, S. H., & Kim, S. H. (2002). Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry, 57, 173–178. DOI:  10.1016/s1567-5394(02)00115-9.CrossRefGoogle Scholar
  44. Lei, Y., Chen, W., & Mulchandani, A. (2006). Microbial biosensors. Analytica Chimica Acta, 568, 200–210. DOI:  10.1016/j.aca.2005.11.065.CrossRefGoogle Scholar
  45. Li, C., Lesnik, K. L., & Liu, H. (2013). Microbial conversion of waste glycerol from biodiesel production into value-added products. Energies, 6, 4739–4768. DOI:  10.3390/en6094739.CrossRefGoogle Scholar
  46. Lobanov, A. V., Borisov, I. A., Gordon, S. H., Greene, R. V., Leathers, T. D., & Reshetilov, A. N. (2001). Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. Biosensors and Bioelectronics, 16, 1001–1007. DOI:  10.1016/s0956-5663(01)00246-9.CrossRefGoogle Scholar
  47. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. DOI:  10.1021/es0605016.CrossRefGoogle Scholar
  48. Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews in Microbiology, 7, 375–381. DOI:  10.1038/nrmicro2113.CrossRefGoogle Scholar
  49. Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews in Microbiology, 4, 497–508. DOI:  10.1038/nrmicro1442.CrossRefGoogle Scholar
  50. Lovley, D. R. (2008). The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology, 19, 564–571. DOI:  10.1016/j.copbio.2008.10.005.CrossRefGoogle Scholar
  51. Lusta, K. A., & Reshetilov, A. N. (1998). Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems (review). Applied Biochemistry and Microbiology, 34, 307–320.Google Scholar
  52. Macauley, S., McNeil, B., & Harvey, L. M. (2001). The genus Gluconobacter and its applications in biotechnology. Critical Reviews in Biotechnology, 21, 1–25. DOI:  10.1080/20013891081665.CrossRefGoogle Scholar
  53. Marko-Varga, G., Dominguez, E., Hahn-Hägerdal, B., Gorton, L., Irth, H., De Jong, G. J., Frei, R. W., & Brinkman, U.A.T. (1990). On-line sample clean-up of fermanetation broths and substrates prior to the liquid-chromatographic separation of carbohydrates. Journal ofChromatography A, 523, 173–188. DOI:  10.1016/0021-9673(90)85021-m.CrossRefGoogle Scholar
  54. Matsushita, K., Yakushi, T., Takaki, Y., Toyama, H., & Adachi, O. (1995). Generation mechanism and purification of an inactive form convertible in vivo to the active form of quino-protein alcohol dehydrogenase in Gluconobacter suboxydans. Journal of Bacteriology, 177, 6552–6559.CrossRefGoogle Scholar
  55. McNeil, B., & Harvey, L. (2005). Energy well spent on a prokaryotic genome. Nature Biotechnology, 23, 186–187. DOI:  10.1038/nbt0205-186.CrossRefGoogle Scholar
  56. Meyer, M., Schweiger, P., & Deppenmeier, U. (2013). Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans. Applied Microbiology and Biotechnology, 97, 3457–3466. DOI:  10.1007/s00253-012-4265-z.CrossRefGoogle Scholar
  57. Navanietha Krishnaraj, R., Karthikeyan, R., Berchmans, S., Chandran, S., & Pal, P. (2013). Functionalization of electro-chemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells. Electrochimica Acta, 112, 465–472. DOI:  10.1016/j.electacta.2013.08.180.CrossRefGoogle Scholar
  58. Ortiz, M. E., Bleckwedel, J., Raya, R. R., & Mozzi, F. (2013). Biotechnological and in situ food production of polyols by lactic acid bacteria. Applied Microbiology and Biotechnology, 97, 4713–4726. DOI:  10.1007/s00253-013-4884-z.CrossRefGoogle Scholar
  59. Park, M., Tsai, S. L., & Chen, W. (2013). Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors, 13, 5777–5795. DOI:  10.3390/s130505777.CrossRefGoogle Scholar
  60. Ponomoreva, O. N., Indzhgiya, E. Y., Alferov, V. A., & Reshetilov, A. N. (2010). Efficiency of bioelectrocatalytic oxidation of ethanol by whole cells and membrane fractions of Gluconobacter oxydans bacteria in the presence of mediators of ferrocene series. Russian Journal of Electrochemistry, 46, 1408–1413. DOI:  10.1134/s1023193510120116.CrossRefGoogle Scholar
  61. Ponomareva, O. N., Arlyapov, V. A., Alferov, V. A., & Reshetilov, A. N. (2011). Microbial biosensors for detection of biological oxygen demand (a review). Applied Biochemistry and Microbiology, 47, 1–11. DOI:  10.1134/s0003683811010108.CrossRefGoogle Scholar
  62. Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society B, Biological Sciences, 84, 260–276. DOI:  10.1098/rspb.1911.0073.CrossRefGoogle Scholar
  63. Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W. F., Ehrenreich, A., Gottschalk, G., & Deppenmeier, U. (2005). Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nature Biotechnology, 23, 195–200. DOI:  10.1038/nbt1062.CrossRefGoogle Scholar
  64. Rafiqul, I. S. M., & Sakinah, A. M. M. (2013). Processes for the production of xylitol-A review. Food Reviews International, 29, 127–156. DOI:  10.1080/87559129.2012.714434.CrossRefGoogle Scholar
  65. Raspor, P., & Goranovič, D. (2008). Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology, 28, 101–124. DOI:  10.1080/07388550802046749.CrossRefGoogle Scholar
  66. Rengasamy, K., & Berchmans, S. (2012). Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresource Technology, 104, 388–393. DOI:  10.1016/j.biortech.2011.10.092.CrossRefGoogle Scholar
  67. Reshetilov, A.N., Donova, M.V., Dovbnya, D.V., Boronin, A. M., Leathers, T. D., & Greene, R. V. (1996). FET-microbial sensor for xylose detection based on Gluconobacter oxydans cells. Biosensors and Bioelectronics, 11, 401–408. DOI:  10.1016/0956-5663(96)82735-7.CrossRefGoogle Scholar
  68. Reshetilov, A. N., Iliasov, P. V., Donova, M. V., Dovbnya, D. V., Boronin, A. M., Leathers, T. D., & Greene, R. V. (1997). Evaluation of a Gluconobacter oxydans whole cell biosensor for amperometric detection of xylose. Biosensors and Bioelectronics, 12, 241–247. DOI:  10.1016/s0956-5663(97)85342-0.CrossRefGoogle Scholar
  69. Reshetilov, A. N., Donova, M. V., Dovbnya, D. V., Il’yasov, P. V., Boronin, A. M., Leasers, T., & Green, R. (1998a). Membrane-bound dehydrogenases of Gluconobacter oxydans: Sensors for measuring sugars, alcohols, and polyoles. Bulletin of Experimental Biology and Medicine, 126, 702–704. DOI:  10.1007/bf02446066.CrossRefGoogle Scholar
  70. Reshetilov, A. N., Lobanov, A. V., Morozova, N. O., Gordon, S. H., Greene, R. V., & Leathers, T. D. (1998b). Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective microbial sensor and a glucose enzyme electrode. Biosensors & Bioelectronics, 13, 787–793. DOI:  10.1016/s0956-5663(98)00043-8.CrossRefGoogle Scholar
  71. Reshetilov, A. N., Trotsenko, J. A., Morozova, N. O., Iliasov, P. V., & Ashin, V. V. (2001). Characteristics of Gluconobacter oxydans B-1280 and Pichia methanolica MN4 cell based biosensors for detection of ethanol. Process Biochemistry, 36, 1015–1020. DOI:  10.1016/s0032-9592(01)00141-8.CrossRefGoogle Scholar
  72. Reshetilov, A. N. (2005). Microbial, enzymatic, and immune biosensors for ecological monitoring and control of biotechnological processes. Applied Biochemistry and Microbiology, 41, 442–449. DOI:  10.1007/s10438-005-0079-4.CrossRefGoogle Scholar
  73. Reshetilov, A., Alferov, S., Tomashevskaya, L., & Ponamoreva, O. (2006). Testing of bacteria Gluconobacter oxydans and electron transport mediators composition for application in biofuel cell. Electroanalysis, 18, 2030–2034. DOI:  10.1002/elan.200603624.CrossRefGoogle Scholar
  74. Ricelli, A., Baruzzi, F., Solfrizzo, M., Morea, M., & Fanizzi, F. P. (2007). Biotransformation of patulin by Gluconobacter oxydans. Applied and Environmental Microbiology, 73, 785–792. DOI:  10.1128/aem.02032-06.CrossRefGoogle Scholar
  75. Rogers, K. R. (2006). Recent advances in biosensor techniques for environmental monitoring. Analytica Chimica Acta, 568, 222–231. DOI:  10.1016/j.aca.2005.12.067.CrossRefGoogle Scholar
  76. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30, 279–291. DOI:  10.1007/s10295-003-0049-x.CrossRefGoogle Scholar
  77. Schenkmayerová, A., Illésová, A., Šefčovičová, J., Štefuca, V., Bučko, M., Vikartovská, A., Gemeiner, P., Tkac, J., & Katrlík, J. (2014). Whole-cell Gluconobacter oxydans biosensor for 2-phenylethanol biooxidation monitoring. Analytica Chimica Acta. (in press)Google Scholar
  78. Šefčovičová, J., Filip, J., Gemeiner, P., Vikartovská, A., Pätoprsty, V., & Tkac, J. (2011). High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochemistry Communications, 13, 966–968. DOI:  10.1016/j.elecom.2011.06.013.CrossRefGoogle Scholar
  79. Šefčovičová, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012). Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033–1039. DOI:  10.1007/s10529-012-0875-x.CrossRefGoogle Scholar
  80. Šefčovičová, J., & Tkac, J. (2015). Application of nanomaterials in microbial-cell biosensor constructions. Chemical Papers, 69, 42–53. DOI:  10.2478/s11696-014-0602-2.Google Scholar
  81. Šefčovičová, J., Filip, J., & Tkac, J. (2015). Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor. Chemical Papers, 69, 176–182. DOI:  10.1515/chempap-2015-0012.Google Scholar
  82. Stojković, I. J., Stamenković, O. S., Povrenović, D. S., & Veljković, V. B. (2014). Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 32, 1–15. DOI:  10.1016/j.rser.2014.01.005.CrossRefGoogle Scholar
  83. Su, L., Jia, W. Z., Hou, C. J., & Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26, 1788–1799. DOI:  10.1016/j.bios.2010.09.005.CrossRefGoogle Scholar
  84. Svitel, J., Curilla, O., & Tkac, J. (1998). Microbial cell-based biosensor for sensing glucose, sucrose or lactose. Biotechnology and Applied Biochemistry, 27, 153–158.Google Scholar
  85. Švitel, J., Tkáč, J., Voštiar, I., Navrátil, M., Štefuca, V., Bučko, M., & Gemeiner, P. (2006). Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction. Biotechnology Letters, 28, 2003–2010. DOI:  10.1007/s10529-006-9195-3.CrossRefGoogle Scholar
  86. Svitel, J., Tkac, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Microbial biosensors and biofuel cells based on Acetobacter and Gluconobacter cells. Hauppauge, NY, USA: Nova Science Publishers.Google Scholar
  87. Takayama, K., Kurosaki, T., & Ikeda, T. (1993). Mediated electrocatalysis at a biocatalyst electrode based on a bacterium, Gluconobacter industrius. Journal of Electroanalytical Chemistry, 356, 295–301. DOI:  10.1016/0022-0728(93)80529-q.CrossRefGoogle Scholar
  88. Tamiya, E., Karube, I., Kitagawa, Y., Ameyama, M., & Nakashima, K. (1988). Alcohol-FET sensor based on a complex cell membrane enzyme system. Analytica Chimica Acta, 207, 77–84. DOI:  10.1016/s0003-2670(00)80784-9.CrossRefGoogle Scholar
  89. Tkáč, J., Gemeiner, P., Švitel, J., Benikovský, T., Šturdík, E., Vala, V., Petruš, L., & Hrabárová, E. (2000a). Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Analytica Chimica Acta, 420, 1–7. DOI:  10.1016/s0003-2670(00)01001-1.CrossRefGoogle Scholar
  90. Tkáč, J., Švitel, J., Novák, R., & Šturdík, E. (2000b). Triglyceride assay by amperometric microbial biosensor: Sample hydrolysis and kinetic approach. Analytical Letters, 33, 2441–2452. DOI:  10.1080/00032710008543200.CrossRefGoogle Scholar
  91. Tkac, J., Vostiar, I., Gemeiner, P., & Sturdik, E. (2002). Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochemistry, 56, 127–129. DOI:  10.1016/s1567-5394(02)00054-3.CrossRefGoogle Scholar
  92. Tkac, J., Vostiar, I., Gorton, L., Gemeiner, P., & Sturdik, E. (2003). Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosensors and Bioelectronics, 18, 1125–1134. DOI:  10.1016/s0956-5663(02)00244-0.CrossRefGoogle Scholar
  93. Tkáč, J., Štefuca, V., & Gemeiner, P. (2005). Biosensors with immobilised microbial cells using amperometric and thermal detection principles. In V. Nedović & R. Willaert (Eds.), Applications of cell immobilisation biotechnology (Vol. 8B, pp. 549–566). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  94. Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 76, 53–62. DOI:  10.1016/j.bioelechem.2009.02.013.CrossRefGoogle Scholar
  95. Treu, B. L., & Minteer, S. D. (2008). Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. Bioelectrochemistry, 74, 73–77. DOI:  10.1016/j.bioelechem.2008.07.005.CrossRefGoogle Scholar
  96. Valach, M., Katrlík, J., Šturdík, E., & Gemeiner, P. (2009). Ethanol Gluconobacter biosensor designed for flow injection analysis: Application in ethanol fermentation off-line monitoring. Sensors and Actuators B: Chemical, 138, 581–586. DOI:  10.1016/j.snb.2009.02.017.CrossRefGoogle Scholar
  97. Wang, J., & Hutchins-Kumar, L. D. (1986). Cellulose-acetate coated mercury film electrodes for anodic-stripping voltammetry. Analytical Chemistry, 58, 402–407. DOI:  10.1021/ac00293a031.CrossRefGoogle Scholar
  98. Wang, H. M., & Ren, Z. Y. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31, 1796–1807. DOI:  10.1016/j.biotechadv.2013.10.001.CrossRefGoogle Scholar
  99. Winkelhausen, E., & Kuzmanova, S. (1998). Microbial conversion of D-xylose to xylitol. Journal of Fermentation and Bioengineering, 86, 1–14. DOI:  10.1016/s0922-338x(98)80026-3.CrossRefGoogle Scholar
  100. Wu, X. S., Wang, X. Y., & Lu, W. Y. (2014). Genomescale reconstruction of a metabolic network for Gluconobacter oxydans 621H. Biosystems, 117, 10–14. DOI:  10.1016/j.biosystems.2014.01.001.CrossRefGoogle Scholar
  101. Yakushi, T., & Matsushita, K. (2010). Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Applied Microbiology and Biotechnology, 86, 1257–1265. DOI:  10.1007/s00253-010-2529-z.CrossRefGoogle Scholar
  102. Ye, L., Haemmerle, M., Olsthoorn, A.J.J., Schuhmann, W., Schmidt, H. L., Duine, J. A., & Heller, A. (1993). High current density “wired” quinoprotein glucose dehydrogenase electrode. Analytical Chemistry, 65, 238–241. DOI:  10.1021/ac00051a008.CrossRefGoogle Scholar
  103. Zhang, Y. N., Hu, Y. B., Wilson, G. S., Moatti-Sirat, D., Poitout, V., & Reach, G. (1994). Elimination of the acetaminophen interference in implantable glucose sensor. Analytical Chemistry, 66, 1183–1188. DOI:  10.1021/ac00079a038.CrossRefGoogle Scholar
  104. Zieliński, L., Deja, S., Jasicka-Misiak, I., & Kafarski, P. (2014). Chemometrics as a tool of origin determination of polish monofloral and multifloral honeys. Journal of Agricultural and Food Chemistry, 62, 2973–2981. DOI:  10.1021/jf4056715.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Aniko Bertokova
    • 1
  • Tomas Bertok
    • 1
  • Jaroslav Filip
    • 1
  • Jan Tkac
    • 1
  1. 1.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations