Chemical Papers

, Volume 69, Issue 2, pp 316–324 | Cite as

Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition

Original Paper


The incorporation of 1 mass % of group VI metals (chromium, molybdenum, and tungsten) into 4 mass % of Ni/MgO catalysts was evaluated for the synthesis of carbon nanotubes (CNTs) by the catalytic chemical vapour deposition of ethylene. All materials were characterised by XRD, surface area, TEM, SEM, Raman spectroscopy, and TGA-DTA. The resulting data demonstrated that the addition of group VI metals improved the surface area and metal dispersion, thereby achieving a remarkable enhancement in catalytic growth activity. Among the metals of group VI, Mo was found to be the most effective promoter for catalysing the CNTs’ growth. From TEM observation, long CNTs with a higher degree of graphitization were obtained on the Ni-Mo/MgO catalyst. TGA and DTA analysis showed that the as-grown CNTs over both Ni-Mo and Ni-W/MgO catalysts exhibited higher thermal stability.


carbon nanotubes chemical vapour deposition nickel transition metals ethylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboul-Gheit, A. K., Awadallah, A. E., El-Kossy, S. M., & Mahmoud, A. L. H. (2008) Effect of Pd or Ir on the catalytic performance of Mo/H-ZSM-5 during the non-oxidative conversion of natural gas to petrochemicals. Journal of Natural Gas Chemistry, 17, 337–343. DOI:  10.1016/s1003-9953(09)60005-0.CrossRefGoogle Scholar
  2. Aboul-Gheit, A. K., & Awadallah, A. E. (2009) Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals. Journal of Natural Gas Chemistry, 18, 71–77. DOI:  10.1016/s1003-9953(08)60080-8.CrossRefGoogle Scholar
  3. Aboul-Gheit, A. K., Awadallah, A. E., Aboul-Enein, A. A., & Mahmoud, A. L. H. (2011) Molybdenum substitution by copper or zinc in H-ZSM-5 zeolite for catalyzing the direct conversion of natural gas to petrochemicals under non-oxidative conditions. Fuel, 90, 3040–3046. DOI:  10.1016/j.fuel.2011.05.010.CrossRefGoogle Scholar
  4. Aboul-Gheit, A. K., El-Masry, M. S., & Awadallah, A. E. (2012) Oxygen free conversion of natural gas to useful hydrocarbons and hydrogen over monometallic Mo and bimetallic Mo-Fe, Mo-Co or Mo-Ni/HZSM-5 catalysts prepared by mechanical mixing. Fuel Processing Technology, 102, 24–29. DOI:  10.1016/j.fuproc.2012.04.017.CrossRefGoogle Scholar
  5. Ago, H., Uehara, N., Yoshihara, N., Tsuji, M., Yumura, M., Tomonaga, N., & Setoguchi, T. (2006) Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts. Carbon, 44, 2912–2918. DOI:  10.1016/j.carbon.2006.05.049.CrossRefGoogle Scholar
  6. Andersen, S. M., Borghei, M., Lund, P., Elina, Y. R., Pasanen, A., Kauppinen, E., Ruiz, V., Kauranen, P., & Skou, E. M. (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells. Solid State Ionics, 231, 94–101. DOI:  10.1016/j.ssi.2012.11.020.CrossRefGoogle Scholar
  7. Ashok, J., Kumar, S. N., Venugopal, A., Kumari, V. D., & Subrahmanyam, M. (2007) COx-free H2 production via catalytic decomposition of CH4 over Ni supportedonzeolite catalysts. Journal of Power Sources, 164, 809–814. DOI:  10.1016/j.jpowsour.2006.11.029.CrossRefGoogle Scholar
  8. Awadallah, A. E., Aboul-Enein, A. A., & Aboul-Gheit, A. K. (2014) Effect of progressive Co loading on commercial Co-Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes. Energy Conversion and Management, 77, 143–151. DOI:  10.1016/j.enconman.2013.09.017.CrossRefGoogle Scholar
  9. Cassell, A. M., Raymakers, J. A., Kong, J., & Dai, H. J. (1999) Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 103, 6484–6492. DOI:  10.1021/jp990957s.CrossRefGoogle Scholar
  10. Chai, S. P., Zein, S. H. S., & Mohamed, A. R. (2006) Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane. Chemical Physics Letter, 426, 345–350. DOI:  10.1016/j.cplett.2006.05.026.CrossRefGoogle Scholar
  11. Chen, M. H., Huang, Z. C., Wu, G. T., Zhu, G. M., You, J. K., & Lin, Z. G. (2003) Synthesis and characterization of SnO-carbon nanotube composite as anode material for lithiumion batteries. Materials Research Bulletin, 38, 831–836. DOI:  10.1016/s0025-5408(03)00063-1.CrossRefGoogle Scholar
  12. Chen, C. M., Dai, Y. M., Huang, J. G., & Jehng, J. M. (2006) Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon, 44, 1808–1820. DOI:  10.1016/j.carbon.2005.12.043.CrossRefGoogle Scholar
  13. Chen, L., Liu, H. T., Yang, K., Wang, J. K., & Wang, X. L. (2009) Catalytic synthesis of carbon nanotubes from the decomposition of methane over a Ni-Co/La2O3 catalyst. Canadian Journal of Chemistry, 87, 47–53. DOI:  10.1139/v08-077.CrossRefGoogle Scholar
  14. de Lucas, A., Garrido, A., Sánchez, P., Romero, A., & Valverde, J. L. (2005) Growth of carbon nanofibers from Ni/Y zeolite based catalysts: Effects of Ni introduction method, reaction temperature, and reaction gas composition. Industrial & Engineering Chemistry Research, 44, 8225–8236. DOI:  10.1021/ie058027k.CrossRefGoogle Scholar
  15. Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G., & Saito, R. (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043–2061. DOI:  10.1016/s0008-6223(02)00066-0.CrossRefGoogle Scholar
  16. Dupuis, A. C. (2005) The catalyst in the CCVD of carbon nanotubes—a review. Progress in Materials Science, 50, 929–961. DOI:  10.1016/j.pmatsci.2005.04.003.CrossRefGoogle Scholar
  17. Fan, S. S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. J. (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512–514. DOI:  10.1126/science.283.5401.512.CrossRefGoogle Scholar
  18. Flahaut, E., Peigney, A., Bacsa, W. S., Bacsa, R. R., & Laurent. Ch. (2004) CCVD synthesis of carbon nanotubes from (Mh,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. Journal of Materials Chemistry, 14, 646–653. DOI:  10.1039/b312367g.CrossRefGoogle Scholar
  19. Fujiwara, A., Ishii, K., Suematsu, H., Kataura, H., Maniwa, Y., Suzuki, S., & Achiba, Y. (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letter, 336, 205–211. DOI:  10.1016/s0009-2614(01)00111-7.CrossRefGoogle Scholar
  20. Harutyunyan, A. R., Pradhan, B. K., Kim, U. J., Chen, G. G., & Eklund, P. C. (2002) CVD synthesis of single wall carbon nanotubes under “soft” conditions. Nano Letters, 2, 525–530. DOI:  10.1021/nl0255101.CrossRefGoogle Scholar
  21. Herrera, J. E., & Resasco, D. E. (2003) Role of Co-W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. The Journal of Physical Chemistry B, 107, 3738–3746. DOI:  10.1021/jp027602k.CrossRefGoogle Scholar
  22. Jehng, J. M., Tung, W. C., & Kuo, C. H. (2008) The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. Journal of Porous Materials, 15, 43–51. DOI:  10.1007/s10934-006-9050-x.CrossRefGoogle Scholar
  23. Kitiyanan, B., Alvarez, W. E., Harwell, J. H., & Resasco, D. E. (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chemical Physics Letter, 317, 497–503. DOI:  10.1016/s0009-2614(99)01379-2.CrossRefGoogle Scholar
  24. Landois, P., Peigney, A., Laurent, Ch., Frin, L., Datas, L., & Flahaut, E. (2009) CCVD synthesis of carbon nanotubes with W/Co-MgO catalysts. Carbon, 47, 789–794. DOI:  10.1016/j.carbon.2008.11.018.CrossRefGoogle Scholar
  25. Lee, C. J., Park, J. H., Kim, J. M., Huh, Y., Lee, J. Y., & No, K. S. (2000) Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chemical Physics Letter, 327, 277–283. DOI:  10.1016/s0009-2614(00)00877-0.CrossRefGoogle Scholar
  26. Li, Y., Zhang, B. C., Tang, X. L., Xu, Y. D., & Shen, W. J. (2006) Hydrogen production from methane decomposition over Ni/CeO2 catalysts. Catalysis Communications, 7, 380–386. DOI:  10.1016/j.catcom.2005.12.002.CrossRefGoogle Scholar
  27. Li, Y. D., Li, D. X., & Wang, G. W. (2011) Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catalysis Today, 162, 1–48. DOI:  10.1016/j.cattod.2010.12.042.CrossRefGoogle Scholar
  28. Loebick, C. Z., Derrouiche, S., Fang, F., Li, N., Haller, G. L., & Pfefferle, L. D. (2009) Effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes. Applied Catalysis A: General, 368, 40–49. DOI:  10.1016/j.apcata.2009.08.004.CrossRefGoogle Scholar
  29. Loebick, C. Z., Lee, S. C., Derrouiche, S., Schwab, M., Chen, Y., Haller, G. L., & Pfefferle, L. (2010) A novel synthesis route for bimetallic CoCr-MCM-41 catalysts with higher metal loadings. Their application in the high yield, selective synthesis of Single-Wall Carbon Nanotubes. Journal of Catalysis, 271, 358–369. DOI:  10.1016/j.jcat.2010.02.021.CrossRefGoogle Scholar
  30. Ni, L., Kuroda, K., Zhou, L. P., Kizuka, T., Ohta, K., Matsuishi, K., & Nakamura, J. (2006) Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon, 44, 2265–2272. DOI:  10.1016/j.carbon.2006.02.031.CrossRefGoogle Scholar
  31. Pasha, M. A., Shafiekhani, A., & Vesaghi, M. A. (2009) Hot filament CVD of Fe-Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas. Applied Surface Science, 256, 1365–1371. DOI:  10.1016/j.apsusc.2009.08.090.CrossRefGoogle Scholar
  32. Pour, A. N., Zamani Kheirolah, Y., Jozani, J., & Mehr, J. Y. (2005) The influence of La2O3 and TiO2 on NiO/MgO/α-Al2O3. Reaction Kinetics and Catalysis Letters, 86, 157–162. DOI:  10.1007/s11144-005-0307-1.CrossRefGoogle Scholar
  33. Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., & Derbyshire, F. (1999) Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letter, 315, 25–30. DOI:  10.1016/s0009-2614(99)01216-6.CrossRefGoogle Scholar
  34. Song, C. S., & Pan, W. (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catalysis Today, 98, 463–484. DOI:  10.1016/j.cattod.2004.09.054.CrossRefGoogle Scholar
  35. Takenaka, S., Kobayashi, S., Ogihara, H., & Otsuka, K. (2003) Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. Journal of Catalysis, 217, 79–87. DOI:  10.1016/s0021-9517(02)00185-9.Google Scholar
  36. Tang, S., Zhong, Z., Xiong, Z., Sun, L., Liu, L., Lin, J., Shen, Z. X., & Tan, K. L. (2001) Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters, 350, 19–26. DOI:  10.1016/s0009-2614(01)01183-6.CrossRefGoogle Scholar
  37. Tans, S. J., Verschueren, A. R. M., & Dekker, C. (1998) Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49–52. DOI:  10.1038/29954.CrossRefGoogle Scholar
  38. Tauster, S. T., Fung, S. C., Baker, R. T. K., & Horsley, J. A. (1981) Strong interactions in supported-metal catalysts. Science, 211, 1121–1125. DOI:  10.1126/science.211.4487.1121.CrossRefGoogle Scholar
  39. Tauster, S. J. (1987) Strong metal-support interactions. Accounts of Chemical Research, 20, 389–394. DOI:  10.1021/ar00143a001.CrossRefGoogle Scholar
  40. Toebes, M. L., Zhang, Y. H., Hájek, J., Nijhuis, T. A., Bitter, J. H., van Dillen, A. J., Murzin, D. Yu., Koningsberger, D. C., & de Jong, K. P. (2004) Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis. Journal of Catalysis, 226, 215–225. DOI:  10.1016/j.jcat.2004.05.026.CrossRefGoogle Scholar
  41. Wang, L. S., Tao, L. X., Xie, M. S., Xu, G. F., Huang, J. S., & Xu, Y. D. (1993) Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters, 21, 35–41. DOI:  10.1007/bf00767368.CrossRefGoogle Scholar
  42. Willems, I., Kónya, Z., Fonseca, A., & Nagy, J. B. (2002) Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide supported Co-based catalysts. Applied Catalysis A: General, 229, 229–233. DOI:  10.1016/s0926-860x(02)00030-3.CrossRefGoogle Scholar
  43. Yeoh, W. M., Lee, K. Y., Chai, S. P., Lee, K. T., & Mohamed, A. R. (2010) The role of molybdenum in Co-Mo/MgO for large-scale production of high quality carbon nanotubes. Journal of Alloys and Compounds, 493, 539–543. DOI:  10.1016/j.jallcom.2009.12.151.CrossRefGoogle Scholar
  44. Yoshida, A., Kaburagi, Y., & Hishiyama, Y. (2006) Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization. Carbon, 44, 2333–2335. DOI:  10.1016/j.carbon.2006.05.020.CrossRefGoogle Scholar
  45. Zheng, G. B., Kouda, K., Sano, H., Uchiyama, Y., Shi, Y. F., & Quan, H. J. (2004) A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon, 42, 635–640. DOI:  10.1016/j.carbon.2003.12.077.CrossRefGoogle Scholar
  46. Zhou, L. P., Ohta, K., Kuroda, K., Lei, N., Matsuishi, K., Gao, L. Z., Matsumoto, T., & Nakamura, J. (2005) Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. The Journal of Physical Chemistry B, 109, 4439–4447. DOI:  10.1021/jp045284e.CrossRefGoogle Scholar
  47. Zhou, W. W., Han, Z. Y., Wang, J. Y., Zhang, Y., Jin, Z., Sun, X., Zhang, Y. W., Yan, C. H., & Li, Y. (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 6, 2987–2990. DOI:  10.1021/nl061871v.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  1. 1.Process Development DivisionEgyptian Petroleum Research InstituteNasr City, CairoEgypt

Personalised recommendations