Skip to main content
Log in

Catalytic wet peroxide oxidation of m-cresol over Fe/γ-Al2O3 and Fe-Ce/γ-Al2 O3

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Catalytic wet peroxide oxidation (CWPO) of m-cresol over Fe/γ-Al2O3 and Fe-Ce/γ-Al2O3 was studied. Catalysts were prepared using the incipient wetness impregnation method, and characterized using XRD, XPS, BET, and SEM techniques. Effects of Ce loading, H2O2 dose, initial solution pH, reaction temperature, and m-cresol concentration on the CWPO of m-cresol were investigated in detail. The results showed that an addition of 2 mass % Ce into Fe/7-Al2O3 resulted in better catalytic activity over a wider pH range and at lower reaction temperatures, and with lower H2O2 consumption than when using the Fe/γ-Al2O3 catalysts only. The best catalytic activity was obtained using the Fe-Ce-2 catalyst with complete m-cresol degradation, 43.2 % TOC removal using 100 mmol L1 H2O2 at pH 4.0 and 60°C in 90 min. XPS showed that an addition of 2 mass % Ce increased the density of non-lattice oxygen on the catalyst surface facilitating electron transfer and thereby producing radicals and promoting catalytic activity in the CWPO reaction. Recycling experiments showed that Fe-Ce-2 retained its activity even after six subsequent runs without changing the morphology, and that iron ions did not significantly leach from the catalyst surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexiadis, V. I., Boukos, N., & Verykios, X. E. (2011) Influence of the composition of Fe2O3/Al2O3 catalysts on the rate of production and quality of carbon nanotubes. Materials Chemistry and Physics, 128, 96–108.DOI: 10.1016/j.matchemphys.2011.02.075.

    Article  CAS  Google Scholar 

  • Bae, S. J., Kim, D. W., & Lee, W. J. (2013) Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Applied Catalysis B: Environmental, 134–135, 93–102.DOI: 10.1016/j.apcatb.2012.12.031.

    Article  Google Scholar 

  • Bao, H. Z., Chen, X., Fang, J., Jiang, Z. Q., & Huang, W. X. (2008) Structure-activity relation of Fe2O3-CeO2 composite catalysts in CO oxidation. Catalysis Letters, 125, 160–167.DOI: 10.1007/s10562-008-9540-3.

    Article  CAS  Google Scholar 

  • Bautista, P., Mohedano, A. F., Menéndez, N., Casas, J. A., & Rodriguez, J. J. (2010) Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catalysis Today, 151, 148–152.DOI: 10.1016/j.cattod.2010.01.023.

    Article  CAS  Google Scholar 

  • Bautista, P., Mohedano, A. F., Casas, J. A., Zazo, J. A., & Rodriguez, J. J. (2011) Highly stable Fe/γ-Al2O3 catalyst for catalytic wet peroxide oxidation. Journal of Chemical Technology and Biotechnology, 86, 497–504.DOI: 10.1002/jctb.2538.

    Article  CAS  Google Scholar 

  • Cai, W. D., Chen, F., Shen, X. X., Chen, L. J., & Zhang, J. L. (2010) Enhanced catalytic degradation ofAO7 in the CeO2-H2O2 system with Fe3+ doping. Applied Catalysis B: Environmental, 101, 160–168.DOI: 10.1016/j.apcatb.2010.09.031.

    Article  CAS  Google Scholar 

  • Carriazo, J., Guélou, E., Barrault, J., Tatibouet, J. M., Molina, R., & Moreno, S. (2005) Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe. Water Research, 39, 3891–3899.DOI: 10.1016/j.watres.2005.06.034.

    Article  CAS  Google Scholar 

  • Catrinescu, C., Teodosiu, C., Macoveanu, M., Miehe-Brendlé, J., & Le Dred, R. (2003) Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Research, 37, 1154–1160.DOI: 10.1016/s0043-1354(02)00449-9.

    Article  CAS  Google Scholar 

  • Chen, A. Y., Ma, X. D., & Sun, H. W. (2008) Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites. Journal of Hazardous Materials, 156, 568–575.DOI: 10.1016/j.jhazmat.2007.12.059.

    Article  CAS  Google Scholar 

  • Chen, F., Shen, X. X., Wang, Y. C., & Zhang, J. L. (2012) CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7. Applied Catalysis B: Environmental 121–122223–229.DOI: 10.1016/j.apcatb.2012.04.014.

    Article  Google Scholar 

  • Choi, K. H., & Lee, W. J. (2012) Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II). Journal of Hazardous Materials, 211–212, 146–153.DOI: 10.1016/j.apcatb.2010.09.031.

    Article  Google Scholar 

  • Devi, L. G., Raju, K. S. A., & Kumar, S. G. (2009) Photodegradation of methyl red by advanced and homogeneous photo-Fenton’s processes: A comparative study and kinetic approach. Journal of Environmental Monitoring, 11, 1397–1404.DOI: 10.1039/b900936a.

    Article  CAS  Google Scholar 

  • di Luca, C., Ivorra, F., Massa, P., & Fenoglio, R. (2012) Alumina supported Fenton-like systems for the catalytic wet peroxide oxidation of phenol solutions. Industrial & Engineering Chemistry Research, 51, 8979–8984.DOI: 10.1021/ie300416n.

    Article  Google Scholar 

  • Gao, Y., & Chambers, S. A. (1997) Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 174, 446–454.DOI: 10.1016/s0022-0248(96)01141-4.

    Article  CAS  Google Scholar 

  • Heckert, E. G., Seal, S., & Self, W. T. (2008) Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environmental Science & Technology, 42, 5014–5019.DOI: 10.1021/es8001508.

    Article  CAS  Google Scholar 

  • Hu, X. B., Liu, B. Z., Deng, Y. H., Chen, H. Z., Luo, S., Sun, C., Yang, P., & Yang, S. G. (2011) Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Applied Catalysis B: Environmental, 107, 274–283.DOI: 10.1016/j.apcatb.2011.07.025.

    Article  CAS  Google Scholar 

  • Inchaurrondo, N., Cechini, J., Font, J., & Haure, P. (2012) Strategies for enhanced CWPO of phenol solutions. Applied Catalysis B: Environmental, 111–112, 641–648.DOI: 10.1016/j.apcatb.2011.11.019.

    Article  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2005) Destruction of cresols by Fenton oxidation process. Water Research, 39, 3062–3072.DOI: 10.1016/j.watres.2005.05.011.

    Article  CAS  Google Scholar 

  • Li, K. Z., Haneda, M., Gu, Z., Wang, H. H., & Ozawa, M. (2013) Modification of CeO2 on the redox property of Fe2O3. Materials Letters, 93, 129–132.DOI: 10.1016/j.matlet.2012.09.039.

    Article  CAS  Google Scholar 

  • Li, H. C., Yu, X., Zheng, H. W., Li, Y. M., Wang, X. H., & Huo, M. X. (2014) Catalytic wet peroxide oxidation of phenol by [C16H33(CH3)3N]4H2SiV2W10O40 catalyst. RSC Advances, 4, 7266–7274.DOI: 10.1039/c3ra46453a.

    Article  CAS  Google Scholar 

  • Liu, Y., & Sun, D. Z. (2007) Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. Journal of Hazardous Materials, 143, 448–454.DOI: 10.1016/j.jhazmat.2006.09.043.

    Article  CAS  Google Scholar 

  • Martins, R. C., Amaral-Silva, N., & Quinta-Ferreira, R. M. (2010) Ceria based solid catalysts for Fenton’s depuration of phenolic wastewaters, biodegradability enhancement and toxicity removal. Applied Catalysis B: Environmental, 99, 135–144.DOI: 10.1016/j.apcatb.2010.06.010.

    Article  CAS  Google Scholar 

  • Massa, P., Dafinov, A., Medina Cabello, F., & Fenoglio, R. (2008) Catalytic wet peroxide oxidation of phenolic solutions over Fe2O3/CeO2 and WO3/CeO2 catalyst systems. Catalysis Communications, 9, 1533–1538.DOI: 10.1016/j.catcom.2007.12.025.

    Article  CAS  Google Scholar 

  • Massa, P., Ivorra, F., Haure, P., & Fenoglio, R. (2011) Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems. Journal of Hazardous Materials, 190, 1068–1073.DOI: 10.1016/j.jhazmat.2011.03.033.

    Article  CAS  Google Scholar 

  • Olaya, A., Blanco, G., Bernal, S., Moreno, S., & Molina, R. (2009) Synthesis of pillared clays with Al-Fe and Al-Fe-Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction. Applied Catalysis B: Environmental, 93, 56–65.DOI: 10.1016/j.apcatb.2009.09.012.

    Article  CAS  Google Scholar 

  • Pradhan, A. C., & Parida, K. M. (2012) Facile synthesis of mesoporous composite Fe/Al2O3-MCM-41: an efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes. Journal of Materials Chemistry, 22, 7567–7579.DOI: 10.1039/c2jm30451a.

    Article  CAS  Google Scholar 

  • Prihod’ko, R., Stolyarova, I., Gündüz, G., Taran, O., Yashnik, S., Parmon, V., & Goncharuk, V. (2011) Fe-exchanged zeolites as materials for catalytic wet peroxide oxidation. Degradation of Rodamine G dye. Applied Catalysis B: Environmental, 104, 201–210.DOI: 10.1016/j.apcatb.2011.02.004.

    Article  Google Scholar 

  • Ramirez, J. H., Costa, C. A., Madeira, L. M., Mata, G., Vicente, M. A., Rojas-Cervantes, M. L., & Martín-Aranda, R. M. (2007) Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71, 44–56.DOI: 10.1016/j.apcatb.2006.08.012.

    Article  CAS  Google Scholar 

  • Rossi, A. F., Amaral-Silva, N., Martins, R. C., & Quinta-Ferreira, R. M. (2012) Heterogeneous Fenton using ceria based catalysts: effects of the calcination temperature in the process efficiency. Applied Catalysis B: Environmental, 111–112, 254–263.DOI: 10.1016/j.apcatb.2011.10.006.

    Article  Google Scholar 

  • Sing, K. S. W. (1985) Reporting physisorption data for gas/soild systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603–619.DOI: 10.1351/pac198557040603.

    Article  CAS  Google Scholar 

  • Smith, B. A., Teel, A. L., & Watts, R. J. (2004) Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems. Environmental Science & Technology, 38, 5465–5469.DOI: 10.1021/es0352754.

    Article  CAS  Google Scholar 

  • Subbaramaiah, V., Srivastava, V. C., & Mall, I. D. (2013) Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15. Journal of Hazardous Materials, 248–249, 355–363.DOI: 10.1016/j.jhazmat.2013.01.018.

    Article  Google Scholar 

  • Wang, J. B., Zhu, W. P., He, X. W., & Yang, S. X. (2008) Catalytic wet air oxidation of acetic acid over different ruthenium catalysts. Catalysis Communications, 9, 2163–2167.DOI: 10.1016/j.catcom.2008.04.019.

    Article  CAS  Google Scholar 

  • Xiang, L., Royer, S., Zhang, H., Tatibouëet, J. M., Barrault, J., & Valange, S. (2009) Properties of iron-based mesoporous silica for the CWPO of phenol: A comparison between impregnation and co-condensation routes. Journal of Hazardous Materials, 172, 1175–1184.DOI: 10.1016/j.jhazmat.2009.07.121.

    Article  CAS  Google Scholar 

  • Yang, Y. C., Lu, Y. G., Ye, Z. X., He, L. P., & Yu, J. (2012) Phenol degradation by catalytic wet hydrogen peroxide oxidation on Fe/active carbon catalyst. Advanced Materials Research, 433–440, 147–152.DOI: 10.4028/www.scientific.net/amr.433-440.147.

    Article  Google Scholar 

  • Zazo, J. A., Pliego, G., Blasco. S., Casas, J. A., & Rodriguez, J. J. (2011) Intensification of the Fenton process by increasing the temperature. Industrial & Engineering Chemistry Research, 50, 866–870.DOI: 10.1021/ie101963k.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Lin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, PJ., Wei, HZ., He, SB. et al. Catalytic wet peroxide oxidation of m-cresol over Fe/γ-Al2O3 and Fe-Ce/γ-Al2 O3. Chem. Pap. 69, 827–838 (2015). https://doi.org/10.1515/chempap-2015-0028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0028

Keywords

Navigation