Skip to main content
Log in

Selection and design of ionic liquids as solvents in extractive distillation and extraction processes

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Since the late 1990’s there has been a tremendous growth in literature on ionic liquids (ILs) for a broad range of applications, i.e. catalysis, electrolytes for batteries, in solvolysis of biomass, and also in separation technology. ILs can be applied as solvents for absorption (e.g. of CO2), extractive distillation and extraction processes. That ILs are not magic solvents but have their limitations has also become evident during the past years. Especially the high costs associated with ILs and the lack of experience with these materials in the industrial practice are factors limiting industrial adoption of ILs. The often praised versatility of properties that can be achieved through combination of different cations and anions generates a huge amount of options and makes it difficult to decide where to start when selecting/designing a solvent. This paper focuses on solvent selection/design for applications in extractive distillations and liquid-liquid extractions; also, solvent performance in several specific case studies taken from the open literature is discussed. Important recommendations include: a) make a conceptual process design including the recovery step, regeneration of the IL may be a critical parameter; b) if extractions from aqueous streams are studied, the uptake of water by the IL is an important factor because such co-extracted water is evaporated during the regeneration; c) compare the process with conventional processes to check whether it performs better than the state-of-the-art in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blahušiak, M., Schlosser, Š., Cvengroš, J., & Marták, J. (2011a) New approach to regeneration of an ionic liquid containing solvent by molecular distillation. Chemical Papers, 65, 603–607. DOI: 10.2478/s11696-011-0053-y.

    Google Scholar 

  • Blahušiak, M., Schlosser, S., & Marták, J. (2011b) Extraction of butyric acid by a solvent impregnated resin containing ionic liquid. Reactive & Functional Polymers, 71, 736–744. DOI: 10.1016/j.reactfunctpolym.2011.04.002.

    Article  Google Scholar 

  • Blahušiak, M., Schlosser, Š., & Cvengroš, J. (2012) Simulation of a new regeneration process of solvents with ionic liquid by short-path distillation. Separation and Purification Technology, 97, 186–194. DOI: 10.1016/j.seppur.2012.03.010.

    Article  Google Scholar 

  • Cláudio, A. F. M., Marques, C. F. C., Boal-Palheiros, I., Freire, M. G., & Coutinho, J. A. P. (2014) Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chemistry, 16, 259–268. DOI: 10.1039/c3gc41999a.

    Article  Google Scholar 

  • Eckert, F., & Klamt, A. (2002) Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE Journal, 48, 369–385. DOI: 10.1002/aic.690480220.

    Article  CAS  Google Scholar 

  • Garcia-Chavez, L. Y. (2012) Designer solvents for the extraction of alcohols and glycols from aqueous streams. Ph.D. thesis, Technical University Eindhoven, Eindhoven, The Netherlands.

    Google Scholar 

  • Garcia-Chavez, L. Y., Garsia, C. M., Schuur, B., & de Haan, A. B. (2012a) Biobutanol recovery using nonfluorinated task-specific ionic liquids. Industrial & Engineering Chemistry Research, 51, 8293–8301. DOI: 10.1021/ie201855h.

    Article  CAS  Google Scholar 

  • Garcia-Chavez, L. Y., Hermans, A. J., Schuur, B., & de Haan, A. B. (2012b) COSMO-RS assisted solvent screening for liquid-liquid extraction of mono ethylene glycol from aqueous streams. Separation and Purification Technology, 97, 2–10. DOI: 10.1016/j.seppur.2011.11.041.

    Article  CAS  Google Scholar 

  • Garcia-Chavez, L. Y., Schuur, B., & de Haan, A. B. (2013) Conceptual process design and economic analysis of a process based on liquid-liquid extraction for the recovery of glycols from aqueous streams. Industrial & Engineering Chemistry Research, 52, 4902–4910. DOI: 10.1021/ie303187x.

    Article  CAS  Google Scholar 

  • Gutiérrez, J. P., Meindersma, G. W., & de Haan, A. B. (2012) COSMO-RS-based ionic-liquid selection for extractive distillation processes. Industrial & Engineering Chemistry Research, 51, 11518–11529. DOI: 10.1021/ie301506n.

    Article  Google Scholar 

  • Harper, P. M., & Gani, R. (2000) A multi-step and multi-level approach for computer aided molecular design. Computers & Chemical Engineering, 24, 677–683. DOI: 10.1016/s0098-1354(00)00410-5.

    Article  CAS  Google Scholar 

  • Jongmans, M. T. G., Schuur, B., & de Haan, A. B. (2011) Ionic liquid screening for ethylbenzene/styrene separation by extractive distillation. Industrial & Engineering Chemistry Research, 50, 10800–10810. DOI: 10.1021/ie2011627.

    Article  CAS  Google Scholar 

  • Jongmans, M. T. G., Londoño, A., Mamilla, S. B., Pragt, H. J., Aaldering, K. T. J., Bargeman, G., Nieuwhof, M. R., ten Kate, A., Verwer, P., Kiss, A. A., van Strien, C. J. G., Schuur, B., & de Haan, A. B. (2012a) Extractant screening for the separation of dichloroacetic acid from monochloroacetic acid by extractive distillation. Separation and Purification Technology, 98, 206–215. DOI: 10.1016/j.seppur.2012.06.040.

    Article  CAS  Google Scholar 

  • Jongmans, M. T. G., Hermens, E., Raijmakers, M., Maassen, J. I. W., Schuur, B., & de Haan, A. B. (2012b) Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation. Chemical Engineering Research and Design, 90, 2086–2100. DOI: 10.1016/j.cherd.2012.05.019.

    Article  CAS  Google Scholar 

  • Jongmans, M. T. G., Trampé, J., Schuur, B., & de Haan, A. B. (2013) Solute recovery from ionic liquids: A conceptual design study for recovery of styrene monomer from [4-mebupy][BF4]. Chemical Engineering and Processing: Process Intensification, 70, 148–161. DOI: 10.1016/j.cep.2013.04.007.

    Article  CAS  Google Scholar 

  • Koel, M. (Ed.) (2009) Ionic liquids in chemical analysis. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Kubota, F., Baba, Y., & Goto, M. (2012) Application of ionic liquids for the separation of rare earth metals. Solvent Extraction Research and Development, Japan, 19, 17–28.

    Article  CAS  Google Scholar 

  • Kyle, B. G., & Leng, D. E. (1965) Solvent selection for extractive distillation. Industrial & Engineering Chemistry, 57, 43–48. DOI: 10.1021/ie50662a007.

    Article  CAS  Google Scholar 

  • Lei, Z. G., Arlt, W., & Wasserscheid, P. (2006) Separation of 1-hexene and n-hexane with ionic liquids. Fluid Phase Equilibria, 241, 290–299. DOI: 10.1016/j.fluid.2005.12.024.

    Article  CAS  Google Scholar 

  • Leskinen, T., King, A. W. T., Kilpeläinen, I., & Argyropoulos, D. S. (2011) Fractionation of lignocellulosic materials with ionic liquids. 1. Effect of mechanical treatment. Industrial & Engineering Chemistry Research, 50, 12349–12357. DOI: 10.1021/ie200063x.

    Article  CAS  Google Scholar 

  • Leskinen, T., King, A. W. T., Kilpeläinen, I., & Argyropoulos, D. S. (2013) Fractionation of lignocellulosic materials using ionic liquids: Part 2. Effect of particle size on the mechanisms of fractionation. Industrial & Engineering Chemistry Research, 52, 3958–3966. DOI: 10.1021/ie302896n.

    Article  CAS  Google Scholar 

  • MacFarlane, D. R., Tachikawa, N., Forsyth, M., Pringle, J. M., Howlett, P. C., Elliott, G. D., Davis, J. H., Jr., Watanabe, M., Simon, P., & Angell, C. A. (2014) Energy applications of ionic liquids. Energy & Environmental Science, 7, 232–250. DOI: 10.1039/c3ee42099j.

    Article  CAS  Google Scholar 

  • Marták, J., & Schlosser, Š. (2007) Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57, 483–494. DOI: 10.1016/j.seppur.2006.09.013.

    Article  Google Scholar 

  • Meindersma, G. W., Hansmeier, A. R., & de Haan, A. B. (2010) Ionic liquids for aromatics extraction. Present status and future outlook. Industrial & Engineering Chemistry Research, 49, 7530–7540. DOI: 10.1021/ie100703p.

    Article  CAS  Google Scholar 

  • Ramdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012) State-of-the-art of CO2 capture with ionic liquids. Industrial & Engineering Chemistry Research, 51, 8149–8177. DOI: 10.1021/ie3003705.

    Article  CAS  Google Scholar 

  • Treybal, R. E. (1951) Liquid extraction. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Vander Hoogerstraete, T., & Binnemans, K. (2014) Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl) phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chemistry, 16, 1594–1606. DOI: 10.1039/c3gc41577e.

    Article  Google Scholar 

  • Wasserscheid, P., & Welton, T. (Eds.) (2002) Ionic liquids in synthesis. Weinheim, Germany: Wiley-VCH. DOI: 10.1002/3527600701.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boelo Schuur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuur, B. Selection and design of ionic liquids as solvents in extractive distillation and extraction processes. Chem. Pap. 69, 245–253 (2015). https://doi.org/10.1515/chempap-2015-0016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0016

Keywords

Navigation