Skip to main content
Log in

Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The functions of metal structures of micro- or nano-dimensions in the sensing mechanisms of amperometric enzyme-based biosensors are considered in the light of the principles of detection of the latter. The applications of metal mono- or bimetallic nanoparticles-modified materials as catalytic electrodes in the fabrication of first-generation and the role which metal nanoparticles play in promoting or enhancing the electron transfer rates in third-generation electrochemical biosensors are reviewed. Some examples of gold NPs functionalised with enzymes via gold-thiol chemistry as a strategy for enzyme immobilisation and spatial orientation when developing amperometric biosensors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aili, D., & Liedberg, B. (2010). Biomimetic approaches to self-assembly of nanomaterials. In C. S. S. R. Kumar (Ed.), Biomimetic and bioinspired nanomaterials (Series: Nanomaterials for the life sciences, Chapter 10, pp. 343–377). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527610419.ntls0212.

    Google Scholar 

  • Alexeyeva, N., Laaksonen, T., Kontturi, K., Mirkhalaf, F., Schiffrin, D. J., & Tammeveski, K. (2006). Oxygen reduction on gold nanoparticle/multi-walled carbon nanotubes modified glassy carbon electrodes in acid solution. Electrochemistry Communications, 8, 1475–1480. DOI: 10.1016/j.elecom.2006.07.002.

    Article  CAS  Google Scholar 

  • Arduini, F., Amine, A., Moscone, D., & Palleschi, G. (2010). Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchimica Acta, 170, 193–214. DOI: 10.1007/s00604-010-0317-1.

    Article  CAS  Google Scholar 

  • Batra, B., & Pundir, C. S. (2013). An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosensors and Bioelectronics, 47, 496–501. DOI: 10.1016/j.bios.2013.03.063.

    Article  CAS  Google Scholar 

  • Bharathi, S., & Lev, O. (1997). Direct synthesis of gold nanodispersions in sol-gel derived silicate sols, gels and films. Chemical Communications, 1997, 2303–2304. DOI: 10.1039/a705609e.

    Article  Google Scholar 

  • Bron, M. (2008). Carbon black supported gold nanoparticles for oxygen electroreduction in acidic electrolyte solution. Journal of Electroanalytical Chemistry, 624, 64–68. DOI: 10.1016/j.jelechem.2008.07.026.

    Article  CAS  Google Scholar 

  • Brondani, D., de Souza, B., Souza, B. S., Neves, A., & Vieira, I. C. (2013). PEI-coated gold nanoparticles decorated with lac-case: A new platform for direct electrochemistry of enzymes and biosensing applications. Biosensors and Bioelectronics, 42, 242–247. DOI: 10.1016/j.bios.2012.10.087.

    Article  CAS  Google Scholar 

  • Chandrasekharan, N., & Kamat, P. V. (2001). Assembling gold nanoparticles as nanostructured films using an electrophoretic approach. Nano Letters, 1, 67–70. DOI: 10.1021/nl000184f.

    Article  CAS  Google Scholar 

  • Charmantray, F., Touisni, N., Hecquet, L., & Mousty, C. (2013). Amperometric biosensor based on galactose oxidase immobilized in clay matrix. Electroanalysis, 25, 630–635. DOI: 10.1002/elan.201200274.

    Article  CAS  Google Scholar 

  • Chauhan, N., Narang, J., Sunny, & Pundir, C. S. (2013). Immobilization of lysine oxidase on a gold-platinum nanoparticles modified Au electrode for detection of lysine. Enzyme and Microbial Technology, 52, 265–271. DOI: 10.1016/j.enzmictec.2013.01.006.

    Article  CAS  Google Scholar 

  • Chikae, M., Idegami, K., Kerman, K., Nagatani, N., Ishikawa, M., Takamura, Y., & Tamiya, E. (2006). Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode. Electrochemistry Communications, 8, 1375–1380. DOI: 10.1016/j.elecom.2006.06.019.

    Article  CAS  Google Scholar 

  • Choi, H.N., Han, J.H., Park, J.A., Lee, J.M., & Lee, W.Y. (2007). Amperometric glucose biosensor based on glucose oxidase encapsulated in carbon nanotube-titania-Nafion composite film on platinized glassy carbon electrode. Electroanalysis, 19, 1757–1763. DOI: 10.1002/elan.200703958.

    Article  CAS  Google Scholar 

  • Comba, F.N., Rubianes, M.D., Herrasti, P., & Rivas, G.A. (2010). Glucose biosensing at carbon paste electrodes containing iron nanoparticles. Sensors and Actuators B: Chemical, 149, 306–309. DOI: 10.1016/j.snb.2010.06.020.

    Article  CAS  Google Scholar 

  • Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N., Jr., & Zucolotto, V. (2009). Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 24, 3073–3077. DOI: 10.1016/j.bios.2009.03.026.

    Article  CAS  Google Scholar 

  • Cui, J., Adeloju, S. B., & Wu, Y. (2014). Integration of a highly ordered gold nanowires array with glucose oxidase for ultrasensitive glucose detection. Analytica Chimica Acta, 809, 134–140. DOI: 10.1016/j.aca.2013.11.024.

    Article  CAS  Google Scholar 

  • Dai, X., & Compton, R. G. (2006). Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III). Analytical Sciences, 22, 567–570. DOI: 10.2116/analsci.22.567.

    Article  CAS  Google Scholar 

  • de Dios, A. S., & Díaz-García, M. E. (2010). Multifunctional nanoparticles: Analytical prospects. Analytica Chimica Acta, 666, 1–22. DOI: 10.1016/j.aca.2010.03.038.

    Article  CAS  Google Scholar 

  • Dhawan, G., Sumana, G., & Malhotra, B. D. (2009). Recent developments in urea biosensors. Biochemical Engineering Journal, 44, 42–52. DOI: 10.1016/j.bej.2008.07.004.

    Article  CAS  Google Scholar 

  • Di, J., Shen, C., Peng, S., Tu, Y., & Li, S. (2005). A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode. Analytica Chimica Acta, 553, 196–200. DOI: 10.1016/j.aca.2005.08.013.

    Article  CAS  Google Scholar 

  • Dimcheva, N., Horozova, E., & Jordanova, Z. (2002a). An amperometric xanthine oxidase enzyme electrode based on hydrogen peroxide electroreduction. Zeitschrift für Naturforschung C — A Journal of Biosciences, 57c, 883–889.

    Google Scholar 

  • Dimcheva, N., Horozova, E., & Jordanova, Z. (2002b). A glucose oxidase immobilized electrode based on modified graphite. Zeitschrift füur Naturforschung C — A Journal of Biosciences, 57c, 705–711.

    Google Scholar 

  • Dimcheva, N. D., Horozova, E. G., & Dodevska, T. M. (2011). Direct electrochemistry of myoglobin immobilized on non-modified and modified graphite. Bulgarian Chemical Communications, 43, 17–22.

    CAS  Google Scholar 

  • Dimcheva, N., Horozova, E., Ivanov, Y., & Godjevargova, T. (2013a). Self-assembly of acetylcholinesterase on gold nanoparticles electrodeposited on graphite. Central European Journal of Chemistry, 11, 1740–1748. DOI: 10.2478/s11532-013-0307-3.

    CAS  Google Scholar 

  • Dimcheva, N., Dodevska, T., & Horozova, E. (2013b). Direct electrochemistry of ascorbate oxidase self-assembled on Au-modified glassy carbon. Journal of the Electrochemical Society, 160, H414–H419. DOI: 10.1149/2.025308jes.

    Article  CAS  Google Scholar 

  • Dimcheva, N., Horozova, E., & Dodevska, T. (2014). Electrochemical activity of two redox biocatalysts promoted by gold nanostructures: A proof of principle and applications in biosensing. In Book of Abstracts of the 8th National Conference on Chemistry: Chemistry for Sustainable Development, June 26–27, 2014 (pp. 11, 107). Sofia, Bulgaria: Union of Chemists in Bulgaria.

    Google Scholar 

  • Do, J. S., Lin, K. H., & Ohara, R. (2011). Preparation of urease/nano-structured polyaniline-Nafion®/Au/Al2O3 electrode for inhibitive detection of mercury ion. Journal of the Taiwan Institute of Chemical Engineers, 42, 662–668. DOI: 10.1016/j.jtice.2010.11.007.

    Article  CAS  Google Scholar 

  • Dobbs, W., Suisse, J. M., Douce, L., & Welter, R. (2006). Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors. Angewandte Chemie, 118, 4285–4288. DOI: 10.1002/ange.200600929.

    Article  Google Scholar 

  • Dodevska, T., Horozova, E., & Dimcheva, N. (2006). Electrocatalytic reduction of hydrogen peroxide on modified graphite electrodes: Application to the development of glucose biosensors. Analytical and Bioanalytical Chemistry, 386, 1413–1418. DOI: 10.1007/s00216-006-0682-0.

    Article  CAS  Google Scholar 

  • Dodevska, T., Horozova, E., & Dimcheva, N. (2010). Design of an amperometric xanthine biosensor based on a graphite transducer patterned with noble metal microparticles. Central European Journal of Chemistry, 8, 19–27. DOI: 10.2478/s11532-009-0102-3.

    CAS  Google Scholar 

  • Dodevska, T., Horozova, E., & Dimcheva, N. (2013). Electrochemical behavior of ascorbate oxidase immobilized on graphite electrode modified with Au-nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 178, 1497–1502. DOI: 10.1016/j.mseb.2013.08.012.

    Article  CAS  Google Scholar 

  • Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., Rosa, J., & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12, 1657–1687. DOI: 10.3390/s120201657.

    Article  CAS  Google Scholar 

  • Du, D., Ding, J., Cai, J., & Zhang, A. (2007a). Electrochemical thiocholine inhibition sensor based on biocatalytic growth of Au nanoparticles using chitosan as template. Sensors and Actuators B: Chemical, 127, 317–322. DOI: 10.1016/j.snb.2007.04.023.

    Article  CAS  Google Scholar 

  • Du, D., Huang, X., Cai, J., & Zhang, A. (2007b). Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sensors and Actuators B: Chemical, 127, 531–535. DOI: 10.1016/j.snb.2007.05.006.

    Article  CAS  Google Scholar 

  • Du, D., Chen, W., Cai, J., Zhang, J., Qu, F., & Li, H. (2008). Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers. Journal of Electroanalytical Chemistry, 623, 81–85. DOI: 10.1016/j.jelechem.2008.06.020.

    Article  CAS  Google Scholar 

  • Du, D., Chen, W., Cai, J., Zhang, J., Tu, H., & Zhang, A. (2009). Acetylcholinesterase biosensor based on gold nanoparticles and cysteamine self assembled monolayer for determination of monocrotophos. Journal of Nanoscience and Nanotechnology, 9, 2368–2373. DOI: 10.1166/jnn.2009.se24.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., & Ohsaka, T. (2002a). An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochemistry Communications, 4, 288–292. DOI: 10.1016/s1388-2481(02)00263-1.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., & Ohsaka, T. (2002b). Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochimica Acta, 47, 4255–4261. DOI: 10.1016/s0013-4686(02)00487-5.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., & Ohsaka, T. (2003). Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes. Journal of Electroanalytical Chemistry, 553, 107–115. DOI: 10.1016/s0022-0728(03)00291-2.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2005a). Oxygen reduction at electrochemically deposited crystallographically oriented Au(1 0 0)-like gold nanoparticles. Electrochemistry Communications, 7, 29–34. DOI: 10.1016/j.elecom.2004.10.010.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2005b). Morphological selection of gold nanoparticles electrodeposited on various substrates. Journal of the Electrochemical Society, 152, C730–C737. DOI: 10.1149/1.2041948.

    Article  Google Scholar 

  • El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2005c). Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. Journal of the Electrochemical Society, 152, C1–C6. DOI: 10.1149/1.1824041.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., & Ohsaka, T. (2006). Electrocatalytic reduction of oxygen at Au nanoparticles-manganese oxide nanoparticle binary catalysts. Journal of the Electrochemical Society, 153, A1365–A1371. DOI: 10.1149/1.2196707.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2006). Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochimica Acta, 52, 1792–1798. DOI: 10.1016/j.electacta.2005.12.057.

    Article  CAS  Google Scholar 

  • El-Deab, M. S., & Ohsaka, T. (2007). Electrocatalysis by design: Effect of the loading level of Au nanoparticles-MnOx nanoparticles binary catalysts on the electrochemical reduction of molecular oxygen. Electrochimica Acta, 52, 2166–2174. DOI: 10.1016/j.electacta.2006.08.041.

    Article  CAS  Google Scholar 

  • El-Deab, M. S. (2009). On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time. Electrochimica Acta, 54, 3720–3725. DOI: 10.1016/j.electacta.2009.01.054.

    Article  CAS  Google Scholar 

  • El-Deab, M. S. (2010). Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays. Journal of Advanced Research, 1, 87–93. DOI: 10.1016/j.jare.2010.01.001.

    Article  Google Scholar 

  • El-Nagar, G. A., Mohammad, A. M., El-Deab, M. S., & El-Anadouli, B. E. (2013). Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles-nickel oxide nanoparticles binary catalysts. Electrochimica Acta, 94, 62–71. DOI: 10.1016/j.electacta.2013.01.133.

    Article  CAS  Google Scholar 

  • Erikson, H., Jürmann, G., Sarapuu, A., Potter, R. J., & Tammeveski, K. (2009). Electroreduction of oxygen on carbon-supported gold catalysts. Electrochimica Acta, 54, 7483–7489. DOI: 10.1016/j.electacta.2009.08.001.

    Article  CAS  Google Scholar 

  • Frasca, S., Rojas, O., Salewski, J., Neumann, B., Stiba, K., Weidinger, I. M., Tiersch, B., Leimkuühler, S., Koetz, J., & Wollenberger, U. (2012). Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode. Bioelectrochemistry, 87, 33–41. DOI: 10.1016/j.bioelechem.2011.11.012.

    Article  CAS  Google Scholar 

  • Freeman, R. G., Hommer, M. B., Grabar, K. C., Jackson, M. A., & Natan, M. J. (1996). Ag-clad Au nanoparticles: Novel aggregation, optical, and surface-enhanced Raman scattering properties. The Journal of Physical Chemistry, 100, 718–724. DOI: 10.1021/jp951379s.

    Article  CAS  Google Scholar 

  • Freestone, I., Meeks, N., Sax, M., & Higgitt, C. (2007). The Lycurgus Cup — a Roman nanotechnology. Gold Bulletin, 40, 270–277. DOI: 10.1007/bf03215599.

    Article  CAS  Google Scholar 

  • Fu, C., Zhou, H., Xie, D., Sun, L., Yin, Y., Chen, J., & Kuang, Y. (2010). Electrodeposition of gold nanoparticles from ionic liquid microemulsion. Colloid and Polymer Science, 288, 1097–1103. DOI: 10.1007/s00396-010-2238-2.

    Article  CAS  Google Scholar 

  • Gao, F., El-Deab, M. S., Okajima, T., & Ohsaka, T. (2005). Electrochemical preparation of a Au crystal with peculiar morphology and unique growth orientation and its catalysis for oxygen reduction. Journal of the Electrochemical Society, 152, A1226–A1232. DOI: 10.1149/1.1906023.

    Article  CAS  Google Scholar 

  • Gartia, M. R., Hsiao, A., Pokhriyal, A., Seo, S., Kulsharova, G., Cunningham, B. T., Bond, T. C., & Liu, G. L. (2013). Colorimetric plasmon resonance imaging using nano Lycurgus Cup arrays. Advanced Optical Materials, 1, 68–76. DOI: 10.1002/adom.201200040.

    Article  Google Scholar 

  • Ghindilis, A. L., Atanasov, P., & Wilkins, E. (1997). Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis, 9, 661–674. DOI: 10.1002/elan.1140090902.

    Article  CAS  Google Scholar 

  • Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107, 4797–4862. DOI: 10.1021/cr0680282.

    Article  CAS  Google Scholar 

  • Gloaguen, F., Léger, J. M., Lamy, C., Marmann, A., Stimmung, U., & Vogel, R. (1999). Platinum electrodeposition on graphite: electrochemical study and STM imaging. Electrochimica Acta, 44, 1805–1816. DOI: 10.1016/s0013-4686(98)00332-6.

    Article  CAS  Google Scholar 

  • Gorton, L., Lindgren, A., Larsson, T., Munteanu, F. D., Ruzgas, T., & Gazaryan, I. (1999). Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Analytica Chimica Acta, 400, 91–108. DOI: 10.1016/s0003-2670(99)00610-8.

    Article  CAS  Google Scholar 

  • Haghighi, B., & Tabrizi, M. A. (2013). Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles. Colloids and Surfaces B: Biointerfaces, 103, 566–571. DOI: 10.1016/j.colsurfb.2012.11.010.

    Article  CAS  Google Scholar 

  • Holland, J. T., Lau, C., Brozik, S., Atanassov, P., & Banta, S. (2011). Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. Journal of the American Chemical Society, 133, 19262–19265. DOI: 10.1021/ja2071237.

    Article  CAS  Google Scholar 

  • Horozova, E. G., Dimcheva, N. D., & Jordanova, Z. J. (2000). Study of xanthine oxidase immobilized electrode based on modified graphite. Zeitschrift für Naturforschung C — A Journal of Biosciences, 55c, 60–65.

    Google Scholar 

  • Horozova, E., Dodevska, T., & Dimcheva, N. (2009). Modified graphites: Application to the development of enzyme-based amperometric biosensors. Bioelectrochemistry, 74, 260–264. DOI: 10.1016/j.bioelechem.2008.09.003.

    Article  CAS  Google Scholar 

  • Hsu, S.Y., Bartling, B., Wang, C., Shieu, F.S., & Liu, C. C. (2010). Enzymatic determination of diglyceride using an iridium nano-particle based single use, disposable biosensor. Sensors, 10, 5758–5773. DOI: 10.3390/s100605758.

    Article  CAS  Google Scholar 

  • Huang, K. J., Niu, D. J., Liu, X., Wu, Z. W., Fan, Y., Chang, Y. F., & Wu, Y. Y. (2011). Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochimica Acta, 56, 2947–2953. DOI: 10.1016/j.electacta.2010.12.094.

    Article  CAS  Google Scholar 

  • Ilias, S. H., Kok, K. Y., Ng, I. K., & Saidin, N. U. (2013). Electrochemical synthesis and characterization of palladium nanostructures. Journal of Physics:Conference Series, 431, 012003. DOI: 10.1088/1742-6596/431/1/012003.

    Google Scholar 

  • Ishikawa, H., Ida, T., & Kimura, K. (1996). Plasmon absorption of gold nanoparticles and their morphologies observed by AFM. Surface Review and Letters, 3, 1153–1156. DOI: 10.1142/s0218625x96002060.

    Article  CAS  Google Scholar 

  • IUPAC (2005–2014). IUPAC compendium of chemical terminology — gold book. Version 2.3.3 (2014-02-24). Research Triangle Park, NC, USA: International Union of Pure and Applied Chemistry. DOI: 10.1351/goldbook.

    Google Scholar 

  • Jäckel, F., & Feldmann, J. (2012). Surface-enhanced Raman scattering using complex-shaped metal nanostructures. In T. K. Sau, & A. L. Rogach (Eds.), Complex-shaped metal nanoparticles: Bottom-up syntheses and applications (Chapter 13, pp. 429–454). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527652570.ch13.

    Chapter  Google Scholar 

  • Jia, W., Su, L., & Lei, Y. (2011). Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosensors and Bioelectronics, 30, 158–164. DOI: 10.1016/j.bios.2011.09.006.

    Article  CAS  Google Scholar 

  • Karimi, S., Ghourchian, H., Rahimi, P., & Rafiee-Pour, H. A. (2012). A nanocomposite based biosensor for cholesterol determination. Analytical Methods, 4, 3225–3231. DOI: 10.1039/c2ay25826a.

    Article  CAS  Google Scholar 

  • Karyakin, A. A. (2001). Prussian blue and its analogues: Electrochemistry and analytical applications. Electroanalysis, 13, 813–819. DOI: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z.

    Article  CAS  Google Scholar 

  • Kirwan, S. M., Rocchitta, G., McMahon, C. P., Craig, J. D., Killoran, S. J., O’Brien, K. B., Serra, P. A., Lowry, J. P., & O’Neill, R. D. (2007). Modifications of poly(o-phenylenediamine) permselective layer on Pt-Ir for biosensor application in neurochemical monitoring. Sensors, 7, 420–437. DOI: 10.3390/s7040420.

    Article  CAS  Google Scholar 

  • Krasnansky, R., Yamamura, S., Thomas, J. K., & Dellaguardia, R. (1991). Photoproduction of gold colloids and films. Langmuir, 7, 2881–2886. DOI: 10.1021/la00060a003.

    Article  CAS  Google Scholar 

  • Krikstolaityte, V., Barrantes, A., Ramanavicius, A., Arnebrant, T., Shleev, S., & Ruzgas, T. (2014). Bioelectrocatalytic reduction of oxygen at gold nanoparticles modified with laccase. Bioelectrochemistry, 95, 1–6. DOI: 10.1016/j.bioelechem.2013.09.004.

    Article  CAS  Google Scholar 

  • Lim, S. H., Wei, J., Lin, J., Li, Q., & You, J. K. (2005). A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosensors and Bioelectronics, 20, 2341–2346. DOI: 10.1016/j.bios.2004.08.005.

    Article  CAS  Google Scholar 

  • Lima, F. H. B., Profeti, D., Chatenet, M., Riello, D., Ticianelli, E. A., & Gonzalez, E. R. (2010). Electro-oxidation of ethanol on Rh/Pt and Ru/Rh/Pt sub-monolayers deposited on Au/C nanoparticles. Electrocatalysis, 1, 72–82. DOI: 10.1007/s12678-010-0014-1.

    Article  CAS  Google Scholar 

  • Liu, S., & Ju, H. (2003). Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis, 15, 1488–1493. DOI: 10.1002/elan.200302722.

    Article  CAS  Google Scholar 

  • Liu, S., Leech, D., & Ju, H. (2003). Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Analytical Letters, 36, 1–19. DOI: 10.1081/al-120017740.

    Article  CAS  Google Scholar 

  • Liu, G., & Lin, Y. (2006). Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry, 78, 835–843. DOI: 10.1021/ac051559q.

    Article  CAS  Google Scholar 

  • Liu, A. R., & Huang, S. M. (2012). A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized onto platinum nanoparticles modified graphene electrode. Science China — Physics, Mechanics & Astronomy, 55, 1163–1167. DOI: 10.1007/s11433-012-4782-x.

    Article  CAS  Google Scholar 

  • Luo, X., Morrin, A., Killard, A. J., & Smyth, M. R. (2006). Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 18, 319–326. DOI: 10.1002/elan.200503415.

    Article  CAS  Google Scholar 

  • Ma, Y., Di, J., Yan, X., Zhao, M., Lu, Z., & Tu, Y. (2009). Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosensors and Bioelectronics, 24, 1480–1483. DOI: 10.1016/j.bios.2008.10.007.

    Article  CAS  Google Scholar 

  • Mano, N., & Edembe, L. (2013). Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosensors and Bioelectronics, 50, 478–485. DOI: 10.1016/j.bios.2013.07.014.

    Article  CAS  Google Scholar 

  • Mao, S., Long, Y., Li, W., Tu, Y., & Deng, A. (2013). Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosensors and Bioelectronics, 48, 258–262. DOI: 10.1016/j.bios.2013.04.026.

    Article  CAS  Google Scholar 

  • Marinov, I., Ivanov, Y., Gabrovska, K., & Godjevargova, T. (2010). Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on nanostructured polymer membrane containing gold nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 62, 67–75. DOI: 10.1016/j.molcatb.2009.09.005.

    Article  CAS  Google Scholar 

  • Martorell, D., Céspedes, F., Martínez-Fàbregas, E., & Alegret, S. (1994). Amperometric determination of pesticides using a biosensor based on a polishable graphite-epoxy biocomposite. Analytica Chimica Acta, 290, 343–348. DOI: 10.1016/0003-2670(94)80121-5.

    Article  CAS  Google Scholar 

  • Marty, J. L., Mionetto, N., & Rouillon, R. (1992). Entrapped enzymes in photocrosslinkable gel for enzyme electrodes. Analytical Letters, 25, 1389–1398. DOI: 10.1080/00032719208017123.

    Article  CAS  Google Scholar 

  • Marty, J. L., Mionetto, N., Lacorte, S., & Barceló, D. (1995). Validation of an enzymatic biosensor with various liquid chromatographic techniques for determining organophosphorus pesticides and carbaryl in freeze-dried waters. Analytica Chimica Acta, 311, 265–271. DOI: 10.1016/0003-2670(94)00617-u.

    Article  CAS  Google Scholar 

  • Mizsei, J., Sipilä, P., & Lantto, V. (1998). Structural studies of sputtered noble metal catalysts on oxide surfaces. Sensors and Actuators B: Chemical, 47, 139–144. DOI: 10.1016/s0925-4005(98)00015-x.

    Article  CAS  Google Scholar 

  • Mizukoshi, Y., Okitsu, K., Maeda, Y., Yamamoto, T. A., Oshima, R., & Nagata, Y. (1997). Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. The Journal of Physical Chemistry B, 101, 7033–7037. DOI: 10.1021/jp9638090.

    Article  CAS  Google Scholar 

  • Montornes, J. M., Vreeke, M. S., & Katakis, I. (2008). Glucose biosensors. In P. N. Bartlett (Ed.), Bioelectrochemistry: Fundamentals, experimental techniques and applications (Chapter 5, pp. 199–217). Chichester, UK: Wiley. DOI: 10.1002/9780470753842.ch5.

    Chapter  Google Scholar 

  • Nagaiah, T. C., Schäfer, D., Schuhmann, W., & Dimcheva, N. (2013). Electrochemically deposited Pd-Pt and Pd-Au codeposits on graphite electrodes for electrocatalytic H2O2 reduction. Analytical Chemistry, 85, 7897–7903. DOI: 10.1021/ac401317y.

    Article  CAS  Google Scholar 

  • Olivia, H., Sarada, B. V., Honda, K., & Fujishima, A. (2004). Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes. Electrochimica Acta, 49, 2069–2076. DOI: 10.1016/j.electacta.2003.10.026.

    Article  CAS  Google Scholar 

  • Palanisamy, S., Karuppiah, C., & Chen, S. M. (2014). Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode. Colloids and Surfaces B: Biointerfaces, 114, 164–169. DOI: 10.1016/j.colsurfb.2013.10.006.

    Article  CAS  Google Scholar 

  • Pandey, P.C., Upadhyay, S., Pathak, H. C., Pandey, C. M. D., & Tiwari, I. (2000). Acetylthiocholine/acetylcholine and thiocholine/choline electrochemical biosensors/sensors based on an organically modified sol-gel glass enzyme reactor and graphite paste electrode. Sensors and Actuators, B: Chemical, 62, 109–116. DOI: 10.1016/s0925-4005(99)00367-6.

    Article  CAS  Google Scholar 

  • Pedrosa, V. A., Caetano, J., Machado, S. A. S., Freire, R. S., & Bertotti, M. (2007). Acetylcholinesterase immobilization on 3-mercaptopropionic acid self assembled monolayer for determination of pesticides. Electroanalysis, 19, 1415–1420. DOI: 10.1002/elan.200703872.

    Article  CAS  Google Scholar 

  • Pingarrón, J. M., Yáńez-Sedeńo, P., & González-Cortés, A. (2008). Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 53, 5848–5866. DOI: 10.1016/j.electacta.2008.03.005.

    Article  CAS  Google Scholar 

  • Pita, M., Gutierrez-Sanchez, C., Toscano, M. D., Shleev, S., & De Lacey, A. L. (2013). Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry, 94, 69–74. DOI: 10.1016/j.bioelechem.2013.07.001.

    Article  CAS  Google Scholar 

  • Plyasova, L. M., Molina, I. Y., Gavrilov, A. N., Cherepanova, S. V., Cherstiouk, O. V., Rudina, N. A., Savinova, E. R., & Tsirlina, G. A. (2006). Electrodeposited platinum revisited: Tuning nanostructure via the deposition potential. Electrochimica Acta, 51, 4477–4488. DOI: 10.1016/j.electacta.2005.12.027.

    Article  CAS  Google Scholar 

  • Qiaocui, S., Tuzhi, P., Yunu, Z., & Yang, C. F. (2005). An electrochemical biosensor with cholesterol oxidase/sol-gel film on a nanoplatinum/carbon nanotube electrode. Electroanalysis, 17, 857–861. DOI: 10.1002/elan.200403162.

    Article  CAS  Google Scholar 

  • Quinn, B. M., Dekker, C., & Lemay, S. G. (2005). Electrode-position of noble metal nanoparticles on carbon nanotubes. Journal of the American Chemical Society, 127, 6146–6147. DOI: 10.1021/ja0508828.

    Article  CAS  Google Scholar 

  • Ragupathy, D., Gopalan, A. I., & Lee, K. P. (2009). Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor. Electrochemistry Communications, 11, 397–401. DOI: 10.1016/j.elecom.2008.11.048.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Noh, H. B., & Shim, Y. B. (2008). Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer: Application for a catechin sensor. Analytical Chemistry, 80, 8020–8027. DOI: 10.1021/ac801033s.

    Article  CAS  Google Scholar 

  • Ramos, S. G., Moreno, M. S., Andreasen, G. A., & Triaca, W. E. (2010). Facetted platinum electrocatalysts for electrochemical energy converters. International Journal of Hydrogen Energy, 35, 5925–5929. DOI: 10.1016/j.ijhydene.2009.12.106.

    Article  CAS  Google Scholar 

  • Sau, T. K., & Rogach, A. L. (2012). Colloidal synthesis of noble metal nanoparticles of complex morphologies. In T. K. Sau, & A. L. Rogach (Eds.), Complex-shaped metal nanoparticles: Bottom-up syntheses and applications (Chapter 1, pp. 7–90). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527652570.ch1.

    Chapter  Google Scholar 

  • Sekol, R. C., Li, X., Cohen, P., Doubek, G., Carmo, M., & Taylor, A. D. (2013). Silver palladium core-shell electrocatalyst supported on MWNTs for ORR in alkaline media. Applied Catalysis B: Environmental, 138–139, 285–293. DOI: 10.1016/j.apcatb.2013.02.054.

    Article  CAS  Google Scholar 

  • Shao, M., Odell, J. H., Choi, S. I., & Xia, Y. (2013). Electrochemical surface area measurements of platinum- and palladium-based nanoparticles. Electrochemistry Communications, 31, 46–48. DOI: 10.1016/j.elecom.2013.03.011.

    Article  CAS  Google Scholar 

  • Shulga, O., & Kirchhoff, J. R. (2007). An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochemistry Communications, 9, 935–940. DOI: 10.1016/j.elecom.2006.11.021.

    Article  CAS  Google Scholar 

  • Singh, M., Verma, N., Garg, A. K., & Redhu, N. (2008). Urea biosensors. Sensors and Actuators B: Chemical, 134, 345–351. DOI: 10.1016/j.snb.2008.04.025.

    Article  CAS  Google Scholar 

  • Somerset, V., Baker, P., & Iwuoha, E. (2009). Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organosphosphate pesticide determination. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 44, 164–178. DOI: 10.1080/03601230802599092.

    Article  CAS  Google Scholar 

  • Stoytcheva, M., Sharkova, V., & Magnin, J. P. (1998). Electrochemical approach in studying the inactivation of immobilized acetylcholinesterase by arsenate(III). Electroanalysis, 10, 994–998. DOI: 10.1002/(SICI)1521-4109(199810)10:14<994::AID-ELAN994>3.0.CO;2-0.

    Article  CAS  Google Scholar 

  • Tang, J., Tian, X. C., Pang, W. H., Liu, Y. Q., & Lin, J. H. (2012). Codeposition of AuPd bimetallic nanoparticles on to ITO and their electrocatalytic properties for ethanol oxidation. Electrochimica Acta, 81, 8–13. DOI: 10.1016/j.electacta.2012.07.048.

    Article  CAS  Google Scholar 

  • Terauchi, S., Koshizaki, N., & Umehara, H. (1995). Fabrication of Au nanoparticles by radio-frequency magnetron sputtering. Nanostructured Materials, 5, 71–78. DOI: 10.1016/0965-9773(95)00011-3.

    Article  CAS  Google Scholar 

  • Tiwari, A., Aryal, S., Pilla, S., & Gong, S. (2009). An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles. Talanta, 78, 1401–1407. DOI: 10.1016/j.talanta.2009.02.038.

    Article  CAS  Google Scholar 

  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75. DOI: 10.1039/df9511100055.

    Article  Google Scholar 

  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The formation of colloidal gold. The Journal ofPhysical Chemistry, 57, 670–673. DOI: 10.1021/j150508a015.

    Article  CAS  Google Scholar 

  • Turkevich, J., & Kim, G. (1970). Palladium: Preparation and catalytic properties of particles of uniform size. Science, 169, 873–879.

    Article  CAS  Google Scholar 

  • Velichkova, Y., Ivanov, Y., Marinov, I., Ramesh, R., Kamini, N. R., Dimcheva, N., Horozova, E., & Godjevargova, T. (2011). Amperometric electrode for determination of urea using electrodeposited rhodium and immobilized urease. Journal of Molecular Catalysis B: Enzymatic, 69, 168–175. DOI: 10.1016/j.molcatb.2011.01.015.

    Article  CAS  Google Scholar 

  • Wang, L., Mao, W., Ni, D., Di, J., Wu, Y., & Tu, Y. (2008). Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochemistry Communications, 10, 673–676. DOI: 10.1016/j.elecom.2008.02.009.

    Article  CAS  Google Scholar 

  • Wang, J., Wang, L., Di, J., & Tu, Y. (2009). Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor. Talanta, 77, 1454–1459. DOI: 10.1016/j.talanta.2008.09.034.

    Article  CAS  Google Scholar 

  • Whyman, R. (1996). Gold nanoparticles: A renaissance in gold chemistry. Gold Bulletin, 29, 11–15. DOI: 10.1007/bf03214736.

    Article  CAS  Google Scholar 

  • Wilson, R. (2008). The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 37, 2028–2045. DOI: 10.1039/b712179m.

    Article  CAS  Google Scholar 

  • Xu, G., Adeloju, S. B., Wu, Y., & Zhang, X. (2012). Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Analytica Chimica Acta, 755, 100–107. DOI: 10.1016/j.aca.2012.09.037.

    Article  CAS  Google Scholar 

  • Xue, B., Chen, P., Hong, Q., Lin, J., & Tan, K. L. (2001). Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. Journal of Materials Chemistry, 11, 2378–2381. DOI: 10.1039/b100618p.

    Article  CAS  Google Scholar 

  • Yang, M., Qu, F., Lu, Y., He, Y., Shen, G., & Yu, R. (2006). Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials, 27, 5944–5950. DOI: 10.1016/j.biomaterials.2006.08.014.

    Article  CAS  Google Scholar 

  • Yu, Y., Chen, Z., He, S., Zhang, B., Li, X., & Yao, M. (2014). Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosensors and Bioelectronics, 52, 147–152. DOI: 10.1016/j.bios.2013.08.043.

    Article  CAS  Google Scholar 

  • Zhang, X., Cao, Y., Yu, S., Yang, F., & Xi, P. (2013). An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. Biosensors and Bioelectronics, 44, 183–190. DOI: 10.1016/j.bios.2013.01.020.

    Article  CAS  Google Scholar 

  • Zhao, S., Zhang, K., Sun, Y., & Sun, C. (2006). Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: Direct electrochemistry and electrocatalysis. Bioelectrochemistry, 69, 10–15. DOI: 10.1016/j.bioelechem.2005.09.004.

    Article  CAS  Google Scholar 

  • Zhao, K., Zhuang, S., Chang, Z., Songm, H., Dai, L., He, P., & Fang, Y. (2007). Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis, 19, 1069–1074. DOI: 10.1002/elan.200603823.

    Article  CAS  Google Scholar 

  • Zhu, L., Xu, L., Tan, L., Tan, H., Yang, S., & Yao, S. (2013). Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta, 106, 192–199. DOI: 10.1016/j.talanta.2012.12.036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina D. Dimcheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimcheva, N.D., Horozova, E.G. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review. Chem. Pap. 69, 17–26 (2015). https://doi.org/10.1515/chempap-2015-0011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0011

Keywords

Navigation