Advertisement

Chemical Papers

, Volume 69, Issue 1, pp 183–191 | Cite as

Whole-cell optical biosensor for mercury — operational conditions in saline water

  • Andrey Solovyev
  • Gabriela Kuncova
  • Katerina Demnerova
Original Paper

Abstract

The present study demonstrates the influences of chlorides, fluorides and bromides of potassium and sodium on the growth and Hg2+-induced bioluminescence of bioreporter Escherichia coli ARL1. In a Luria-Bertani medium (LB), cell growth was inhibited by concentrations of sodium and potassium fluorides above 0.2 mol L−1. The addition of NaCl increased cell tolerance to the toxic effects of fluorides and bromides. Lag periods of 10 h and more were observed for cultivations in LB without NaCl and with halides (NaCl, KCl, NaBr, KBr, NaF and KF) at concentrations lower than 0.06 mol L−1. In a phosphate buffer (PB), the bioluminescence of E. coli ARL1, induced with HgCl2, was increased by the addition of NaCl, KCl, NaBr, KBr, NaF and KF (concentration of 0–0.25 mol L−1). In a saline phosphate buffer (PBS), the maxima of induced bioluminescence declined to 50 %, in the case of NaF (0.12 mol L−1), and to zero for KF. An addition of tryptone to the induction medium increased induced light emission ten-fold. Concentrated artificial sea water (ASW) (70–100 % ASW) inhibited bioluminescence induction. The new detection assay with E. coli ARL1 made possible the detection of 0.57 µL−1 of HgCl2 in double-diluted artificial sea water (25 % ASW).

Keywords

mercury detection assay bioluminescent bioreporter sea water E. coli ARL1 whole-cell biosensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulkarim, S. M., Fatimah, A. B., & Anderson, J. G. (2009). Effect of salt concentrations on the growth of heat-stressed and unstressed Escherichia coli. Journal of Food, Agriculture and Environment, 7, 51–54.Google Scholar
  2. Baker, J. L., Sudarsan, N., Weinberg, Z., Roth, A., Stockbridge, R. B., & Breaker, R. B. (2012). Widespread genetic switches and toxicity resistance proteins for fluoride. Science, 335, 233–235. DOI:  10.1126/science.1215063.CrossRefGoogle Scholar
  3. Barkay, T., Gillman, M., & Turner, R. R. (1997). Effects of dissolved organic carbon and salinity on bioavailability of mercury Applied and Environmental Microbiology, 63, 4267–4271.Google Scholar
  4. Boszke, L., Głosińska, G., & Siepak, J. (2002). Some aspects of speciation of mercury in a water environment. Polish Journal of Environmental Studies, 11, 285–298.Google Scholar
  5. Condee, C. W., & Summers, A. O. (1992). A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. Journal of Bacteriology, 174, 8094–8101.CrossRefGoogle Scholar
  6. Corbisier, P., van der Lelie, D., Borremans, B., Provoost, A., de Lorenzo, V., Brown, N.L., Lloyd, J. R., Hobman, J. L., Csöregi, E., Johansson, G., & Mattiasson, B. (1999). Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta, 387, 235–244. DOI:  10.1016/s0003-2670(98)00725-9.CrossRefGoogle Scholar
  7. Dahl, A. L., Sanseverino, J., & Gaillard, J. F. (2011). Bacterial bioreporter detects mercury in the presence of excess EDTA. Environmental Chemistry, 8, 552–560. DOI:  10.1071/en11043.CrossRefGoogle Scholar
  8. Deryabin, D. G., & Aleshina, E. S. (2008). Effect of salts on luminescence of natural and recombinant luminescent bacterial biosensors. Applied Biochemistry and Microbiology, 44, 292–296.CrossRefGoogle Scholar
  9. Environmental Protection Agency (2009). Basic information about mercury (inorganic) in drinking water. EPA 816-F-09-004. Washington, D.C., USA.Google Scholar
  10. Ivask, A., Green, T., Polyak, B., Mor, A., Kahru, A., Virta, M., & Marks, R. (2007). Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosensors and Bioelectronics, 22, 1396–1402. DOI:  10.1016/j.bios.2006.06.019.CrossRefGoogle Scholar
  11. Gerasimova, M. A., & Kudryasheva, N. S. (2002). Effects of potassium halides on bacterial bioluminescence. Journal of Photochemistry and Photobiology B: Biology, 66, 218–222. DOI:  10.1016/s1011-1344(02)00240-3.CrossRefGoogle Scholar
  12. Glass, K. A., Loeffelholz, J. M., Ford, J. P., & Doyle, M. P. (1992). Fate of Escherichia coli 0157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Applied and Environmental Microbiology, 58, 2513–2516.Google Scholar
  13. Golding, G. R., Sparling, R., & Kelly, A. C. (2008). Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Applied and Environmental Microbiology, 74, 667–665. DOI:  10.1128/aem.00717-07.CrossRefGoogle Scholar
  14. Hakkila, K., Green, T., Leskinen, P., Ivask, A., Marks, R., & Virta, M. (2004). Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. Journal of Applied Toxicology, 24, 333–342. DOI:  10.1002/jat.1020.CrossRefGoogle Scholar
  15. Hidalgo, G., Chen, X. C., Hay, A. G., & Lion, L. W. (2010). Curli produced by Escherichia coli PHL628 provide protection from Hg(II). Applied and Environmental Microbiology, 76, 6939–6941. DOI:  10.1128/aem.01254-10.CrossRefGoogle Scholar
  16. How, J.A., Lim, J.Z.R., Goh, D.J.W., Ng, W.C., Oon, J. S. H., Lee, K. C., Lee, C. H., & Ling, M. H. T. (2013). Adaptation of Escherichia coli ATCC 8739 to 11% NaCl. Dataset Papers in Biology, 2013, 219095. DOI:  10.7167/2013/219095.CrossRefGoogle Scholar
  17. Kushner, D. J. (1968). Halophilic bacteria. Advances in Applied Microbiology, 10, 73–99. DOI:  10.1016/s0065-2164(08)70189-8.CrossRefGoogle Scholar
  18. Ma, H.L., Wu, X.H., Yang, M., Wang, J.M., Wang, J.M., & Wang, J. D. (2014). Effects of fluoride on bacterial growth and its gene/protein expression. Chemosphere, 100, 190–193. DOI:  10.1016/j.chemosphere.2013.11.032.CrossRefGoogle Scholar
  19. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed). New York, NY, USA: Cold Spring Harbor Laboratory Press.Google Scholar
  20. Selifonova, O., Burlage, R., & Barkay, T. (1993). Bioluminescent sensors for detection of bioavailable Hg(II)in the environment. Applied and Environmental Microbiology, 59, 3083–3090.Google Scholar
  21. Selifonova, O. V., & Barkay, T. (1994). Role of Na+ in transport of Hg2+ and induction of the Tn2l mer Operon. Applied and Environmental Microbiology, 60, 3503–3507.Google Scholar
  22. Shi, W. J., Menn, F. M., Xu, T. T., Zhuang, Z. T., Beasley, C., Ripp, S., Zhuang, J., Layton, A. C., & Sayler, G. S. (2014). C60 reduces the bioavailability of mercury in aqueous solutions. Chemosphere, 95, 324–328. DOI:  10.1016/j.chemosphere.2013.09.027.CrossRefGoogle Scholar
  23. Troussellier, M., Bonnefont, J. L., Courties, C., Derrien, A., Dupray, E., Gauthier, M., Gourmelon, M., Joux, F., Lebaron, P., Martin, Y., & Pommepuy, M. (1998). Responses of enteric bacteria to environmental stresses in seawater. Oceanologica Acta, 21, 965–981. DOI:  10.1016/s0399-1784(99)80019-x.CrossRefGoogle Scholar
  24. Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P., & Heringa, M. B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources. Analytical and Bioanalytical Chemistry, 400, 915–929. DOI:  10.1007/s00216-010-4372-6.CrossRefGoogle Scholar
  25. Winslow, C. E. A., Walker, H. H., & Sutermeister, M. (1932). The influence of aeration and of sodium chloride upon the growth curve of bacteria in various media. Journal of Bacteriology, 24, 185–208.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2015

Authors and Affiliations

  • Andrey Solovyev
    • 1
    • 2
  • Gabriela Kuncova
    • 1
  • Katerina Demnerova
    • 2
  1. 1.Institute of Chemical Process Fundamentals ASCRPrague 6Czech Republic
  2. 2.Department of Biochemistry and MicrobiologyInstitute of Chemical Technology PraguePrague 6Czech Republic

Personalised recommendations