Skip to main content
Log in

Germination strategies of two dominant Carex species in a swamp alder forest: implications for restoration

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Germination strategy is an essential mechanism that determines plant survival in previously established populations or newly colonised sites. Carex is a group of species that has shown difficulties to germinate experimentally and also many of them failed in order to use in restoration projects. Our aim was to determine whether Carex elata and C. elongata that dominate in vegetation of Central European swamps differ in their germination strategy. We conducted germination experiments with stratified and unstratified seeds of both species to determine: 1) if they are able to germinate fresh, 2) if they exhibit a cyclic dormancy pattern, and 3) if they will germinate from a seed bank. We demonstrate fresh seed germination and no evidence of cyclic dormancy in either species. Stratification did not enhance final germination but it did accelerate germination. Seed bank seeds of both species germinate sparsely. We demonstrate that these coexisting Carex species differ with respect to final germination. The higher germination percentages of the fresh seeds compared to buried and seed bank seeds of both species probably reflect adaptation to fluctuating water-level conditions. In summary, these findings support a strategy of fresh germination in a highly-variable environment. Our study indicates that both C. elata and C. elongata are suitable for restoration projects. Successful establishment and revegetation with C. elongata may result simply from sowing fresh seeds. In contrast, seed sowing, combined with vegetatively produced seedling transplants is essential for the successful restoration of C. elata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angevine M.W. & Chabot B.F. 1979. Seed germination syndromes in higher plants, pp. 188–206. In: Solbrig O.T., Jain S., Johnson G.B. & Raven P.H. (eds), Topics in Plant Population Biology, Columbia University Press, New York.

    Google Scholar 

  • Baskin C.C. & Baskin J.M. 1988. Germination ecophysiology of herbaceous plant species in a temperate region. Am. J. Bot. 75: 286–305.

    Article  Google Scholar 

  • Baskin C.C. & Baskin J.M. 1993. Seed germination ecophysiology of four summer annual mudflat species of Cyperaceae. Aquat. Bot. 45: 41–52.

    Article  Google Scholar 

  • Baskin C.C. & Baskin J.M. 1998. Seeds. Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, 665 pp.

    Google Scholar 

  • Baskin C.C., Chesson P.L. & Baskin J.M. 1993. Annual seed dormancy cycles in two desert winter annuals. J. Ecol. 81: 551–556.

    Article  Google Scholar 

  • Baskin C.C., Chester W.E. & Baskin J.M. 1996. Effect of flooding on annual dormancy cycles in buried seeds of two wetland Carex species. Wetlands 16: 84–88.

    Article  Google Scholar 

  • Brändel M. 2005. The effect of stratification temperatures on the level of dormancy in primary and secondary dormant seeds of two Carex species. Plant Ecol. 178: 163–169.

    Article  Google Scholar 

  • Budelsky R.A. & Galatowitsch S.M. 1999. Effects of moisture, temperature, and time on seed germination of five wetland Carices: implications for restoration. Restor. Ecol. 7: 86–97.

    Article  Google Scholar 

  • Cochrane A., Kelly A., Brown K. & Cunneen S. 2002. Relationships between seed germination requirements and ecophysiological characteristics aid the recovery of threatened native plant species in Western Australia. Ecol. Manage. Restor. 3: 47–60.

    Article  Google Scholar 

  • Core Team R. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://doi.org/www.R-project.org/..

    Google Scholar 

  • Crawley M. J. 2012. The R book, 2nd edition. John Wiley & Sons, Inc., Chichester, 1076 pp.

    Book  Google Scholar 

  • Czerepko J., Boczon A., Pierzgalski E., Sokolowski A.W. & Wróbel M. 2007. Habitat diversity and spontaneous succession of forest wetlands in Bialowieza primeval forest, pp. 37–43. In: Okruszko T., Maltby E., Szatylowicz J., Miroslaw-Swiatek D. & Kotowski W. (eds), Wetlands: Modeling, Monitoring and Management, Taylor and Francis, London.

    Google Scholar 

  • Douda J., Boublík K., Slezák M., Biurrun I., Nociar J., Havrdová A., Doudová J., Aćić S., Brisse H., Brunet J., Chytrý M., Claessens H., Csiky J., Didukh Y., Dimopoulos P., Dullinger S., FitzPatrick Ú., Guisan A., Horchler P.J., Hrivnák R., Jandt U., Kącki Z., Kevey B., Landucci F., Lecomte H., Lenoir J., Paal J., Paternoster D., Pauli H., Pielech R., Rodwell J.S., Roelandt B., Svenning J.C., Šibík J., Šilc U., Škvorc Ž., Tsiripidis I., Tzonev R.T., Wohlgemuth T. & Zimmermann N.E. 2016a. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl. Veg. Sci. 19: 147–163.

    Article  Google Scholar 

  • Douda J., Čejková A., Douda K. & Kochánková J. 2009. Development of alder carr after the abandonment of wet grasslands during the last 70 years. Ann. For. Sci. 66: 1–13.

    Article  Google Scholar 

  • Douda J., Doudová-Kochánková J., Boublík K. & Drašnarová A. 2012. Plant species coexistence at local scale in temperate swamp forest: test of habitat heterogeneity hypothesis. Oe-cologia 169: 523–534.

    Google Scholar 

  • Douda J., Hulík J. & Doudová J. 2016b. Vegetative sprouting as an additional pathway for a seed size-number trade-off: a field-parameterised simulation approach. Community Ecol. 17: 205–215.

    Article  Google Scholar 

  • Emrani S.N., Arzani A. & Saeidi G. 2013. Seed viability, germination and seedling growth of canola (Brassica napus L.) as influenced by chemical mutagens. Afr. J. Biotechnol. 10: 12602–12613.

    Google Scholar 

  • Eriksson O. & Fröborg H. 1996. “Windows of opportunity” for recruitment in long-lived clonal plants: experimental studies of seedling establishment in Vaccinium shrubs. Can. J. Bot. 74: 1369–1374.

    Article  Google Scholar 

  • Fernández-Pascual E., Jiménez-Alfaro B. & Díaz T.E. 2013. The temperature dimension of the seed germination niche in fen wetlands. Plant ecol. 214: 489–499.

    Article  Google Scholar 

  • Fojt W. & Harding M. 1995. Thirty years of change in the vegetation communities of valley mires in Suffolk, England. J. Appl. Ecol. 32: 561–577.

    Article  Google Scholar 

  • Grime J.P., Mason G., Curtis A.V., Rodman J., Band S.R., Mowforth M.A.G., Neal A.M. & Shaw S. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69: 1017–1059.

    Article  Google Scholar 

  • Gross N., Suding K.N., Lavorel S. & Roumet C. 2007. Complementarity as a mechanism of coexistence between functional groups of grasses. J. Ecol. 95: 1296–1305.

    Article  Google Scholar 

  • Hegi G. 1980. Illustrierte Flora von Mitteleuropa, Band 2, Teil 1, Cyperaceae, Typhaceae incl. Sparganiaceae, Araceae, Lemnaceae, Juncaceae, 3rd edition. Parey, Berlin.

    Google Scholar 

  • Hothorn T., Bretz F. & Westfall P. 2013. Package “multcomp”. https://doi.org/cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf (accessed 18.8.2013).

    Google Scholar 

  • Keddy P.A. 1992: Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3: 157–164.

    Article  Google Scholar 

  • Keddy P.A., Wisheu I.C., Shippley B. & Gaudet C. 1989. Seed banks and vegetation management for conservation: toward predictive community ecology, pp. 347–365. In: Leck M.A., Parker V.T. & Simpson R.L. (eds), Ecology of Soil Seed Banks. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Kettenring K.M. & Galatowitsch S.M. 2007. Temperature requirements for dormancy break and seed germination vary greatly among 14 wetland Carex species. Aquat. Bot. 87: 209–220.

    Article  Google Scholar 

  • Kettenring K.M. & Galatowitsch S.M. 2011a. Seed rain of restored and natural prairie wetlands. Wetlands 31: 283–294.

    Article  Google Scholar 

  • Kettenring K.M. & Galatowitsch S.M. 2011b. Carex seedling emergence in restored and natural prairie wetlands. Wetlands 31: 273–281.

    Article  Google Scholar 

  • Leck M.A. & Schütz W. 2005. Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspect. Plant Ecol. Evol. Syst. 7: 95–133.

    Article  Google Scholar 

  • Mayfield M.M. & Levine J.M. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13: 1085–1093.

    Article  PubMed  Google Scholar 

  • McCullagh P. & Nelder J. A. 1989. Generalized Linear Models, 2nd edition. Chapman & Hall, London, 532 pp.

    Book  Google Scholar 

  • Narbona E., Delgado A., Encina F., Miguez M. & Buide M.L. 2013. Seed germination and seedling establishment of the rare Carex helodes Link depend on the proximity to water. Aquat. Bot. 110: 55–60.

    Article  Google Scholar 

  • Schütz W. 1997a. Are germination strategies important for the ability of cespitose wetland sedges (Carex) to grow in forests. Can. J. Bot. 75: 1692–1699.

    Article  Google Scholar 

  • Schütz W. 1997b. Primary dormancy and annual dormancy cycles in seeds of six temperate wetland sedges. Aquat. Bot. 59: 75–85.

    Article  Google Scholar 

  • Schütz W. 2000. Ecology of seed dormancy and germination in sedges (Carex). Perspect. Plant Ecol. Evol. Syst. 3: 67–89.

    Article  Google Scholar 

  • Schütz W. & Rave G. 1999. The effect of cold stratification and light on the seed germination of temperate sedges (Carex) from various habitats and implications for regenerative strategies. Plant Ecol. 144: 215–230.

    Article  Google Scholar 

  • Schütz W. & Rave G. 2003. Variation in seed dormancy of the wetland sedge, Carex elongata, between populations and individuals in two consecutive years. Seed Sci. Res. 13: 315–322.

    Article  Google Scholar 

  • Silvertown J. 2004. Plant coexistence and the niche. Trends Ecol. Evol. 19: 605–611.

    Article  Google Scholar 

  • Thompson K., Bakker J.P. & Bekker R.M. 1997. The soil seed banks of North West Europe: methodology, density and longevity. Cambridge university press, Cambridge, 288 pp.

    Google Scholar 

  • Tolasz R., Míková T. & Valeriánová A. 2007. Climate atlas of Czechia. ČHMÚ, Praha & UP, Olomouc.

    Google Scholar 

  • Van der Valk A.G., Bremholm T.L. & Gordon E. 1999. The restoration of sedge meadows: seed viability, seed germination requirements, and seedling growth of Carex species. Wetlands 19: 756–764.

    Article  Google Scholar 

  • Van der Valk A.G. & Pederson R.L. 1989. Seed banks and the management and restoration of natural vegetation, pp. 329–346. In: Leck M.A., Parker V.T. & Simpson R.L. (eds), Ecology of Soil Seed Banks, Academic Press, San Diego.

    Chapter  Google Scholar 

  • Van Kleunen M., Fischer M. & Schmid B. 2002. Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evolution 56: 2168–2177.

    Article  PubMed  Google Scholar 

  • Venables W.N. & Ripley B.D. 1998. Modern Applied Statistics with S-Plus. Springer-Verlag, New York, 447 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Hulík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulík, J., Douda, J. Germination strategies of two dominant Carex species in a swamp alder forest: implications for restoration. Biologia 72, 370–377 (2017). https://doi.org/10.1515/biolog-2017-0045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0045

Key words

Navigation