Advertisement

Acta Geophysica

, Volume 64, Issue 6, pp 2077–2091 | Cite as

Variations of Strength, Resistivity and Thermal Parameters of Clay after High Temperature Treatment

  • Qiang Sun
  • Weiqiang Zhang
  • Yuliang Zhang
  • Lining Yang
Open Access
Article

Abstract

This paper reports the variations of strength, resistivity and thermal parameters of clay after high-temperature heating. Experiments were carried out to test the physical properties of clay heated at temperatures ranging from room temperature to 800°C in a furnace. The experiment results show that below 400°C the uniaxial compressive strength and resistivity change very little. However, above 400°C, both increase rapidly. At a temperature under 400°C, the thermal conductivity and specific heat capacity decrease significantly. The thermogravimetric analysis (TG) and differential scanning calorimeter (DSC) test indicate that a series of changes occur in kaolinite at temperatures from 400 to 600°C, which is considered the primary cause of the variation of physical and mechanical properties of clay under high temperatures.

Key words

high temperature clay strength resistivity thermal parameters 

References

  1. Abuel-Naga, H.M., D.T. Bergado, A. Bouazza, and M.J. Pender (2009), Thermal conductivity of soft Bangkok clay form laboratory and field measurements, Eng. Geol. 05, 3–4, 211-219, DOI: 10.1016/j.enggeo.2009.02.008.Google Scholar
  2. Aparicio, P., and E. Galan (1999), Mineralogical interference on kaolinite crystallinity index measurements, Clay. Clay Miner. 47, 1, 12-27, DOI: 10.1346/ CCMN.1999.0470102.CrossRefGoogle Scholar
  3. Belloto, M., A. Gualtieri, G. Artioli, and S.-M. Clark (1995), Kinetic study of the kaolinite-mullite reaction sequence. Part II: Mullite formation, Phys. Chem. Minerals 22, 4, 215–222, DOI: 10.1007/BF00202254.Google Scholar
  4. Cai, J.G. (2003), Oregano-clay complexes in muddy sediments and mudstones, Ph.D. Thesis, Tongji University, Shanghai (in Chinese).Google Scholar
  5. Cai, J.G., Y.J. Bao, S.Y. Yang, X.X. Wang, D.D. Fan, J.L. Xu, and A.P. Wang (2007), Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone, Sci. China D 50, 5, 765–775, DOI: 10.1007/s11430-007-0005-0.CrossRefGoogle Scholar
  6. De Aza, A.H., X. Turrillas, M.A. Rodriguez, T. Duran, and P. Pena (2014), Timeresolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite, J. Eur. Ceram. Soc. 34, 5, 1409–1421, DOI: 10.1016/j.jeurceramsoc.2013.10.034.CrossRefGoogle Scholar
  7. Dixon, D.A., M.N. Gray, and A.W. Thomas (1985), A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal, Eng. Geol. 21, 3–4, 247-255, DOI: 10.1016/0013-7952(85) 90015-8.CrossRefGoogle Scholar
  8. Dupray, F., C. Li, and L. Laloui (2013), Thermal conductivity of soft Bangkok clay form laboratory and field measurements, Eng. Geol. 63, 113–121, DOI: 10.1016/j.enggeo.2013.05.019.CrossRefGoogle Scholar
  9. Gens, A., L. do Guimarães, S. Olivella, and M. Sánchez (2010), Modelling thermohydro-mechano-chemical interactions for nuclear waste disposal, J. Rock Mech. Geotech. Eng. 2, 2, 97–102, DOI: 10.3724/SP.J.1235.2010.00097.CrossRefGoogle Scholar
  10. Hunt, J.M. (1996), Petroleum Geochemistry and Geology, 2nd ed., W.H. Freeman and Co., New York, 100 pp.Google Scholar
  11. Laloui, L., and C. Cekerevac (2003), Thermo-plasticity of clays an isotropic yield mechanism, Comp. Geotech. 30, 8, 649–660, DOI: 10.1016/j.compgeo. 2003.09.001.CrossRefGoogle Scholar
  12. Lee, S., Y.J. Kim, and H.S. Moon (1999), Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope, J. Am. Ceram. Soc. 82, 10, 2841–2848, DOI: 10.1111/j.1151-2916.1999.tb02165.x.CrossRefGoogle Scholar
  13. Li, Y., Q.C. Yu, B. Yang, and Y. Dai (2012), Characterization of vacuum thermal decomposed kaolin vacuum, Chin. J. Vacuum Sci. Tech. 32, 599–604 (in Chinese).Google Scholar
  14. Mao, R.R., X.B. Mao, L.Y. Zhang, and R.X. Liu (2015), Effect of loading rates on the characteristics of thermal damage for mudstone under different temperatures, Int. J. Min. Sci. Technol. 25, 5, 797–801, DOI: 10.1016/j.ijmst. 2015.07.015CrossRefGoogle Scholar
  15. Melenevsky, V.N., A.E. Kontorovich, and W.L. Huang, A.I. Larichev, and T.A. Bul’bak (2009), Hydrothermal pyrolysis of organic matter in Riphean mudstone, Geochem. Int. 47, 5, 476–484, DOI: 10.1134/ S0016702909050048.CrossRefGoogle Scholar
  16. Monfared, M., J. Sulem, P. Delage, and M. Mohajerani (2011), A laboratory investigation on thermal properties of the opalinus claystone, Rock Mech. Rock Eng. 97, 735–747, DOI: 10.1007/s00603-0110-0171-4.CrossRefGoogle Scholar
  17. Nelskamp, S., P. David, and R. Littke (2008), A comparison of burial, maturity and temperature histories of selected wells from sedimentary basins in the Netherlands, Int. J. Earth Sci. 97, 5, 931–953, DOI: 10:1007/s00531-007-0229-4.CrossRefGoogle Scholar
  18. O’Flaherty, C.A., and M.N. Gray (1974), The influence of alkali compounds on the compaction and early strength properties of lime-soil mixtures, Austral. Road Res. 5, 5, 4–15.Google Scholar
  19. Peltonen, C., Ø. Marcussen, Bjørlykke, and J. Jahren (2009), Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties, Mar. Petrol. Geol. 26, 6, 887–898, DOI: 10.1016/j.marpelgeo.2008.01.021.CrossRefGoogle Scholar
  20. Radhokrishra, H.S., and H.T. Chan (1989), Thermal and physical properties of candidate buffer-backfill material for a nuclear fuel waste disposal vault, Can. Geotech. 26, 6, 629–639, DOI: 10.1016/0148-9062(90)92830-8.CrossRefGoogle Scholar
  21. Sánchez, M., A. Shastri, and A. Gens (2011), Transient behavior of a clay barrier subjected to high temperature changes, Geo-Frontiers 2011, 4156–4165, DOI: 10.1061/41165(397)425.Google Scholar
  22. Sato, T., T. Watanable, and Otsuka (1992), Effects of layer charge location and energy change on expansion properties of dioctahedral smectite, Clay. Clay Miner. 40, 1, 103–113, DOI: 10.1346/CCMN.1992.0400111.CrossRefGoogle Scholar
  23. Ślizowski, K., J. Janeczek, and K. Przewłocki (2003), Suitability of salt-mudstones as a host rock in salt domes for radioactive-waste storage, Appl. Energ. 75, 1-2, 119–128, DOI: 10.1016/S0140-6701(04)91754-7.CrossRefGoogle Scholar
  24. Sun, L.N., Z.N. Zhang, Y.D. Wu, L. Su, Y.Q. Xia, Z.D. Gao, Y.W. Zheng, and Z.X. Wang (2015a), Effect of temperature and pressure on hydrocarbon yield of source rock HTHP simulation experiment in semi-open system, Nat. Gas. Geosci. 26, 1, 118–127, DOI: 10.11764/j.issn.1672-1926.2015.01. 0118 (in Chinese).Google Scholar
  25. Sun, Q., S.Y. Zhu, and L. Xue (2015b), Electrical resistivity variation in uniaxial rock compression, Arab. J. Geosci. 8, 4, 1869–1880, DOI: 10.1007/s12517-014-1381-3.CrossRefGoogle Scholar
  26. Sundberg, J., P.E. Back, R. Christiansson, H. Hökmark, M. Ländell, and J. Wrafter (2009), Modeling of thermal rock mass properties at the potential sites of a Swedish nuclear waste repository, Int. J. Rock Mech. Min. Sci. 46, 6, 1042–1054, DOI: 10.1016/j.ijrmms.2009.02.004.CrossRefGoogle Scholar
  27. Tian, H., M. Ziegler, and T. Kempka (2014), Physical and mechanical behavior of claystone exposed to temperatures up to 1000°C, Int. J. Rock Mech. Min. Sci. 70, 144–153, DOI: 10.1016/j.ijrmms.2014.04.014.Google Scholar
  28. Witherspoon, P.A. (2001), Geological Challenges in Radioactive Waste Isolation, Third Word Rev., California, USA.Google Scholar
  29. Wu, J.G., and H.W. Zhou (2008), Dynamic experimental research on phase transformation of Kaoliniteiteunder high temperature within microzone, Nonmetallic. Min. 31, 6, 10–13, DOI: 10.1016/j.clay.2013.07.017 (in Chinese).Google Scholar
  30. Zhang, L.Y. (2012), Research on damage evolution and fracture mechanisms of mudstone under high temperature, Ph.D. Thesis, China. Univ. Min. Tech., Xuzhou (in Chinese).Google Scholar
  31. Zhang, Z.Q., and R.Z. Yuan (1993), Study on dchydroxylation process of Kaolinite and its structural change, Bull. Chin. Ceramic Soc. 4, 37–41 (in Chinese).Google Scholar
  32. Zheng, J.D., B.B. Chang, T.T. Chen, and J. Yin (2010), Study on the high temperature modification of attapulgite, Appl. Chem. Industry 39, 1835–1837 (in Chinese).Google Scholar
  33. Zhu, H.J., X. Yao, and Z.H. Zhang (2008), Optimization of calcined temperature for Kaolinite activation, J. Build. Mater. 1, 621–625 (in Chinese).Google Scholar

Copyright information

© Sun et al. 2016

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license, http://creativecommons.org/licenses/by-nc-nd/3.0/.

Authors and Affiliations

  • Qiang Sun
    • 1
  • Weiqiang Zhang
    • 1
  • Yuliang Zhang
    • 1
  • Lining Yang
    • 1
  1. 1.School of Resources and GeosciencesChina University of Mining and TechnologyXuzhou, Jiangsu ProvinceP.R. China

Personalised recommendations