Acta Geophysica

, Volume 64, Issue 6, pp 2717–2733 | Cite as

Dynamic and Thermal Processes in the Mid-Latitude Ionosphere over Kharkov, Ukraine (49.6° N, 36.3° E), During the 13–15 November 2012 Magnetic Storm: Calculation Results

  • Mykhaylo V. Lyashenko
Open Access


Calculation results of the variations of dynamic and thermal process parameters in geospace plasma during the 13–15 November 2012, magnetic storm (MS) over Kharkov are presented. The calculations were based on experimental data obtained on the Kharkov incoherent scatter radar, single in the European mid-latitudes. Calculations showed that during the MS there took place an increase, by modulus, of the values of vertical component of transfer velocity, due to ambipolar diffusion, up to a factor of 1.4–2.1. During the MS there took place a decrease of the values of energy input to the electron gas by about 20–35%. During the main phase of MS, the heat flux density transferred by electrons increased up to a factor of 2–2.5. Results of estimates of the zonal component electric field value Ey are presented. During the MS the value of Ey was −9.5 mV/m. The vertical component of plasma velocity due to electromagnetic drift vEB has been calculated.

Key words

magnetic storm dynamic and thermal processes geospace 


  1. Blanc, M., and P. Amayenc (1979), Seasonal variations of the ionospheric ExB drift above Saint-Santin on quite days, J. Geophys. Res. 84, A6, 2691–2704, DOI: 10.1029/JA084iA06p02691.CrossRefGoogle Scholar
  2. Blanc, M, P. Amayenc, P. Bauer, and C. Taieb (1977), Electric field induced from the French incoherent scatter facilities, J. Geophys. Res. 82, 1, 87–97, DOI: 10.1029/JA082i001p00087.CrossRefGoogle Scholar
  3. Buonsanto, M.J. (1999), Ionospheric storms: A review, Space Sci. Rev. 88, 3–4, 563, DOI: 10.1023/A:1005107532631.CrossRefGoogle Scholar
  4. Buonsanto, M.J., S.A. Gonzalez, G. Lu, B.W. Reinisch, and J.P. Thayer (1999a), Coordinated incoherent scatter radar study of the January 1997 storm, J. Geophys. Res. 104, A11, 24625–24637, DOI: 10.1029/1999JA900358.CrossRefGoogle Scholar
  5. Buonsanto, M.J., S.A. Gonzalez, X. Pi, J.M. Ruohoniemi, M.P. Sulzer, W.E. Swartz, J.P. Thayer, and D.N. Yuan (1999b), Radar chain study of the May, 1995 storm, J. Atmos. Sol.-Terr. Phys. 61, 3–4, 233–248, DOI: 10.1016/S1364-6826(98)00134-5.CrossRefGoogle Scholar
  6. Burmaka, V.P., and L.F. Chernogor (2012), Wave disturbances in the ionosphere during a lasting solar activity minimum, Geomagn. Aeron. 52, 2, 183–196, DOI: 10.1134/S001679321202003X.CrossRefGoogle Scholar
  7. Chernogor, L.F., Ye.I. Grigorenko, V.N. Lysenko, and V.I. Taran (2007), Dynamic processes in the ionosphere during magnetic storms from the Kharkov incoherent scatter radar observations, Int. J. Geomagn. Aeron. 7, GI3001, DOI: 10.1029/2005GI000125.CrossRefGoogle Scholar
  8. Domnin, I.F., L.Ya. Emelyanov, M.V. Lyashenko, and L.F. Chernogor (2014a), Partial solar eclipse of January 4, 2011 above Kharkiv: observation and simulation results, Geomagn. Aeron. 54, 5, 583–592, DOI: 10.1134/ S0016793214040112.CrossRefGoogle Scholar
  9. Domnin, I.F., L.Ya. Emelyanov, S.V. Katsko, and L.F. Chernogor (2014b), Ionospheric effects of geospace storm of November 13–14, 2012, Radio Phys. Radio Astron. 19, 2, 170–180 (in Russian).Google Scholar
  10. Domnin, I.F., C. La Hoz, and M.V. Lyashenko (2014c), Variation of the electric field zonal component, the vertical component of the plasma drift and neutral wind velocities in ionosphere over Kharkov (Ukraine) during August 5–6, 2011 and November 13–15, 2012 magnetic storms, Bull. Nation. Tech. Univ. “Kharkiv Polytechnic Institute”. Series: Radio Physics and Ionosphere 47, 15–21.Google Scholar
  11. Emelyanov, L.Ya., and T.G. Zhivolup (2013), History of the development of IS radars and founding of the Institute of Ionosphere in Ukraine, Hist. Geo Space Sci. 4, 1, 7–17, DOI: 10.5194/hgss-4-7-2013.CrossRefGoogle Scholar
  12. Finlay, C.C., S. Maus, C.D. Beggan, T.N. Bondar, A. Chambodut, T.A. Chernova, A. Chulliat, V.P. Golovkov, B. Hamilton, M. Hamoudi, R. Holme, G. Hulot, W. Kuang, B. Langlais, V. Lesur, F.J. Lowes, H. Lühr, S. MacMillan, M. Mandea, S. McLean, C. Manoj, M. Menvielle, I. Michaelis, N. Olsen, J. Rauberg, M. Rother, T.J. Sabaka, A. Tangborn, L. Tøffner-Clausen, E. Thébault, A.W.P. Thomson, I. Wardinski, Z. Wei, and T.I. Zvereva (2010), International geomagnetic reference field: the eleventh generation, Geophys. J. Int. 183, 3, 1216–1230, DOI: 10.1111/j.1365-246X.2010.04804.x.CrossRefGoogle Scholar
  13. Goncharenko, L.P., J.E. Salah, A. van Eyken, V. Howells, J.P. Thayer, V.I. Taran, B. Shpynev, Q. Zhou, and J. Chau (2005), Observations of the April 2002 geomagnetic storm by the global network of incoherent scatter radars, Ann. Geophys. 23, 1, 163–181.CrossRefGoogle Scholar
  14. Grigorenko, E.I., V.N. Lysenko, V.I. Taran, and L.F. Chernogor (2005a), Specific features of the ionospheric storm of March 20–23, 2003, Geomagn. Aeron. 45, 6, 745–757.Google Scholar
  15. Grigorenko, E.I., S.A. Pazyura, V.I. Taran, L.F. Chernogor, and S.V. Chernyaev (2005b), Dynamic processes in the ionosphere during the severe magnetic storm of May 30–31, 2003, Geomagn. Aeron. 45, 6, 758–777.Google Scholar
  16. Grigorenko, E.I., V.N. Lysenko, S.A. Pazyura, V.I. Taran, and L.F. Chernogor (2007), Ionospheric disturbances during the severe magnetic storm of November 7–10, 2004, Geomagn. Aeron. 47, 6, 720–738, DOI: 10.1134/ S0016793207060059.CrossRefGoogle Scholar
  17. Immel, T.J., G. Liu, S.L. England, L.P. Goncharenko, P.J. Erickson, M.V. Lya-shenko, M. Milla, J. Chau, H.U. Frey, S.B. Mende, Q. Zhou, A. Stromme, and L.J. Paxton (2015), The August 2011 URSI World Day campaign: Initial results, J. Atmos. Sol-Terr. Phys. 134, 47–55, DOI: 10.1016/j.jastp. 2015.09.005.CrossRefGoogle Scholar
  18. Lyashenko, M.V. (2013), The effects of the partial solar eclipse on January 4, 2011 in the variety of thermal process parameters in ionosphere, Sun Geosph. 8, 1, 15–18.Google Scholar
  19. Lyashenko, M.V, and L.F. Chernogor (2013), Solar eclipse of August 1, 2008, above Kharkov: 3. Calculation results and discussion, Geomagn. Aeron. 53, 3, 367–376, DOI: 10.1137/S0016793213020096.CrossRefGoogle Scholar
  20. Ogawa, T., Y. Tanaka, A. Huzita, and M. Yasuhara (1975), Horizontal electric fields in the middle latitude, Planet. Space Sci. 23, 5, 825–830, DOI: 10.1016/ 0032-0633(75)90019-7.CrossRefGoogle Scholar
  21. Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues, J. Geophys. Res. 107, A12, 1468–1483, DOI: 10.1029/ 2002JA009430.CrossRefGoogle Scholar
  22. Richmond, A.D., M. Blanc, B.A. Emery, R.H. Wand, B.G Fejer, R.F. Woodman, S. Ganguly, P. Amayenc, R.A. Behnke, C. Calderon, and J.V. Evans (1980), An empirical model of quite-day ionospheric electric fields at middle and low latitudes, J. Geophys. Res. 85, A9, 4658–4664, DOI: 10.1029/JA085iA09p04658.CrossRefGoogle Scholar
  23. Schunk, R.W., and A.F. Nagy (2000), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Atmospheric and Space Science Series, Cambridge University Press, New York, 555 pp.CrossRefGoogle Scholar
  24. Sergeenko, N.P. (1982), Estimates of electric fields during ionospheric disturbances. In: R.A. Zevakina, and N.P. Sergeenko (eds.), Ionospheric Forecasting, Nauka, Moscow, 91–96 (in Russian).Google Scholar
  25. Stubbe, P. (1968), Frictional forces and collision frequencies between moving ion and neutral gases, J. Atmos. Terr. Phys. 30, 12, 1965–1985, DOI: 10.1016/ 0021-9169(68)90004-4.CrossRefGoogle Scholar

Copyright information

© Lyashenko 2016

This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivs license,

Authors and Affiliations

  1. 1.Institute of IonosphereKharkovUkraine

Personalised recommendations