Advertisement

Acta Geophysica

, Volume 64, Issue 5, pp 1942–1969 | Cite as

A Preliminary Study On the Electrical Signatures of Some Iron and Stony Meteorites and Their Dependence On Nickel Content

  • Bassem S. Nabawy
  • Pierre Rochette
Open Access
Article

Abstract

The present study is considered as an exploratory study of electrical properties of meteorites at variable current frequencies, called the electrical signature. The electric resistivity has been measured at different frequencies, varying between 1 and 100 KHz for some iron meteorites (Mundrabilla and Gibeon meteorites), stony meteorite samples (NWA 869, NWA 7629 and Ghubara) and Fe-Ni alloys, of known Ni concentration, which have been prepared and used as standards to be compared with the studied meteorites. In addition, SEM studies supported by EDX technique have been applied. The SEM and EDX displays enabled us to obtain the chemical composition and internal structural fabrics of the studied samples. Porosity and density (bulk and grain densities) have also been measured for both types of meteorites. Porosity values of the studied meteorites are very low (∅ ≤ 3%) and correspond to micro vugs and cracks. The grain density of non-weathered samples varies from 3.48 g/cm3 for the stony meteorites to 7.91 g/cm3 for the iron meteorites. The obtained electrical signatures are diagnostic for each type and can be used to detect quantitatively the concentration of Ni. The electrical signature of stony meteorites is much simpler than that of iron meteorites, and simpler signatures have been obtained at higher Ni concentrations.

Key words

electrical signature porosity iron meteorites 

References

  1. Binns, R.A. (1967), Cognate xenoliths in chondritic meteorites: examples in Mezo-Madras and Ghubara, Geochim. Cosmochim. Ac. 32, 3, 299–317, DOI: 10.1016/0016-7037(68)90017-3.CrossRefGoogle Scholar
  2. Bischoff, A., and T. Geiger (1995), Meteorites from the Sahara: Find locations, shock classification, degree of weathering, and pairing, Meteoritics 30, 1, 113–122, DOI: 10.1111/j.1945-5100.1995.tb01219.x.CrossRefGoogle Scholar
  3. Bland, P.A., F.J. Berry, T.B. Smith, S.J. Skinener, and C.T. Pillinger (1996), The flux of meteorites to the Earth and weathering in hot desert ordinary chondrite finds, Geochim. Cosmochim. Ac. 60, 11, 2053–2059, DOI: 10.1016/0016-7037(96)00125-1.CrossRefGoogle Scholar
  4. Bland, P.A., F.J. Berry, Jull, T.B. Smith, A.W.R. Bevan, J.M. Cadogan, A.S. Sexton, L.A. Franchi, and C.T. Pillinger (2002), 57Fe Mössbauer spectroscopy studies of meteorites: Implications for weathering rates, meteorites flux, and early solar system processes, Hyperfine Interact. 141, 3, 481–494, DOI: 10.1023/A:1022440217371.CrossRefGoogle Scholar
  5. Bland, P.A., L.E. Howard, D.J. Prior, J. Wheeler, R.M. Hough, and K.A. Dyl (2011), Earliest rock fabric formed in the solar system preserved in a chondrule rim, Nat. Geosci. 4, 244–247, DOI: 10.1038/ngeo1120.CrossRefGoogle Scholar
  6. Bogard, D.D., J.C. Huneke, D.S. Burnett, and G.J. Wasserburg (1971), Xe and Kr analyses of silicate inclusions from iron meteorites, Geochim. Cosmochim. Ac. 35, 12, 1231–1254, DOI: 10.1016/0016-7037(71)90113-X.CrossRefGoogle Scholar
  7. Britt, D.T., and G.J. Consolmagno (2003), Stony meteorite porosities and densities: A review of the data through 2001, Meteorit. Planet. Sci. 38, 8, 1161–1180, DOI: 10.1111/j.1945-5100.2003.tb00305.x.CrossRefGoogle Scholar
  8. Britt, D.T., D. Yeomans, K. Housen, and G. Consolmagno (2002), Asteroid density, porosity, and structure. In: W.F. Bottke, A. Cellino, P. Paolicchi, and R.P. Binzel (eds.), Asteroids III, University of Arizona Press, Tucson, 485–500.Google Scholar
  9. Buchwald, V.F. (1975), Handbook of Iron Meteorites, University of California Press, Berkeley.Google Scholar
  10. Christie, J.M., D.T. Griggs, A.H. Heuer, G.L. Nord Jr., S.V. Radcliffe, J.S. Lally, and R.M. Fisher (1973), Electron petrography of Apollo 14 and 15 breccias and shock-produced analogs. In: Proc. 4th Lunar Sci. Conf., 365–382.Google Scholar
  11. Consolmagno, G.J., D.T. Britt, and C.P. Stoll (1998), The porosities of ordinary chondrites: Models and interpretation, Meteorit. Planet. Sci. 33, 6, 1221–1229, DOI: 10.1111/j.1945-5100.1998.tb01307.x.CrossRefGoogle Scholar
  12. Corrigan, C.M., M.E. Zolensky, J. Dahl, M. Long, J. Weir, C. Sapp, and Burkett (1997), The porosity and permeability of chondritic meteorites and interplanetary dust particles, Meteorit. Planet. Sci. 32, 4, 509–515, DOI: 10.1111/j.1945-5100.1997.tb01296.x.CrossRefGoogle Scholar
  13. Coulson, I.M., M. Beech, and W. Nie (2007), Physical properties of Martian meteorites: Porosity and density measurements, Meteorit. Planet. Sci. 42, 12, 2043–2054, DOI: 10.1111/j.1945-5100.2007.tb01006.x.CrossRefGoogle Scholar
  14. Crabb, J. (1983), On the sitting of noble gases in silicate inclusions of the El Taco iron meteorite (abstract). In: Lunar and Planetary Science XIV, Lunar and Planetary Institute, Houston, 134–135.Google Scholar
  15. Cuzzi, J.N., R.C. Hogan, and K. Shariff (2008), Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula, Astrophys. J. 687, 2, 1432–1447, DOI: 10.1086/591239.CrossRefGoogle Scholar
  16. Darling, D.J. (2003), The Universal Book of Astronomy: From the Andromeda Galaxy to the Zone of Avoidance, 584 pp.Google Scholar
  17. Davison, Th.M., F.J. Ciesla, G.S. Collins, and D. Elbeshausen (2014), The effect of impact obliquity on shock heating in planetesimal collisions, Meteorit. Planet. Sci. 49, 12, 2252–2265, DOI: 10.1111/maps.12394.CrossRefGoogle Scholar
  18. DeLaeter, J.R. (1972), The Mundrabilla Meteorite Shower, Meteoritics 7, 3, 285–294.CrossRefGoogle Scholar
  19. Dodd, R.T. (1981), Meteorites: A Petrologic-chemical Synthesis, Cambridge University Press, Cambridge, 368 pp.Google Scholar
  20. Fegley, B. Jr. (1983), Primordial retention of nitrogen by terrestrial planets and meteorites, Proc. Lunar Planet. Sci. Conf. 13th, J. Geophys. Res. 88, A853–A868.CrossRefGoogle Scholar
  21. Flynn, G.J. (2004), Physical properties of meteorites and interplanetary dust particles: Clues to the properties of the meteors and their parent bodies, Earth Moon Planets 95, 1, 361–374, DOI: 10.1007/s11038-005-9025-y.Google Scholar
  22. Flynn, G.J. (2014), Porosity as a significant factor for asteroid survival, Conference abstract Asteroids, Comets, Meteors, Helsinki.Google Scholar
  23. Flynn, G.J., L.B. Moore, and W. Klöch (1999), Density and porosity of stone meteorites: Implications for the density, porosity, cratering, and collisional disruption of asteroids, Icarus 142, 1, 97–105, DOI: 10.1006/icar.1999.6210.CrossRefGoogle Scholar
  24. Gooding, J.L. (1986a), Clay-mineraloid weathering products in Antarctic meteorites, Geochim. Cosmochim. Ac. 50, 10, 2215–2223, DOI: 10.1016/0016-7037(86)90076-1.CrossRefGoogle Scholar
  25. Gooding, J.L. (1986b), Weathering of stony meteorites. In: J.O. Annexstad, L.S. Shultz, and H. Wänke (eds.), Antarctica. International Workshop on Antarctic Meteorites, Lunar and Planet Inst., Houston Tex., LPI Tech Rep. 86–01, 48–54.Google Scholar
  26. Grady, M.M. (2000), Catalogue of Meteorites, 5th ed., Cambridge University Press, Cambridge, 696 pp.Google Scholar
  27. Hamano, Y., and K. Yomogida (1982), Magnetic anisotropy and porosity of antarctic chondrites, Mem. Nat. Inst. Polar Res. 25, 281–289.Google Scholar
  28. Kieffer, S.W., and C.H. Simonds (1980), The role of volatiles and lithology in the impact cratering process, Rev. Geophys. 18, 1, 143–181, DOI: 10.1029/RG018i001p00143.CrossRefGoogle Scholar
  29. Kohout, T., K. Havrila, J. Tóth, M. Husárik, M. Gritsevich, D. Britt, J. Borovička, P. Spurný, A. Igaz, J. Svoreň, L. Kornoš, P. Vereš, J. Koza, P. Zigo, S. Gajdoš, J. Világi, D. Čapek, Z. Krišandová, D. Tomko, J. Šilha, E. Schunová, M. Bodnárová, D. Búzová, and T. Krejčová (2014a), Density, porosity and magnetic susceptibility of the Košice meteorite shower and homogeneity of its parent meteoroid, Planet. Space Sci. 93-94, 96–100, DOI: 10.1016/j.pss.2014.02.003.CrossRefGoogle Scholar
  30. Kohout, T., M. Gritsevich, V.I. Grokhovsky, G.A. Yakovlev, J. Haloda, P. Halodova, R.M. Michallik, A. Penttilä, and K. Muinonen (2014b), Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite–Insight into shock-induced changes in asteroid regoliths, Icarus 228, 78–85, DOI: 10.1016/j.icarus.2013.09.027.CrossRefGoogle Scholar
  31. Krzesińska, A. (2011), High resolution X-ray tomography as a tool for analysis of internal textures in meteorites, Meteorites 1, 1, 3–12.Google Scholar
  32. Lee, M.R., and P.A. Bland (2004), Mechanisms of weathering of meteorites recovered from hot and cold deserts and the formation of phyllosilicates, Geochim. Cosmochim. Ac. 68, 4, 893–916, DOI: 10.1016/S0016-7037(03)00486-1.CrossRefGoogle Scholar
  33. Mathew, K.J., and F. Begemann (1995), Isotopic composition of xenon and krypton in silicate-graphite inclusions of the El Taco, Campo Del Cielo, IAB iron meteorite, Geochim. Cosmochim. Ac. 59, 22, 4729–4746, DOI: 10.1016/0016-7037(95)00332-0.CrossRefGoogle Scholar
  34. McKay, D.S., D.D. Bogard, R.V. Morris, R.L. Korotev, P. Johnson, and S.J. Wentworth (1986), Apollo 16 regolith breccias: Characterization and evidence for early formation in the mega-regolith, Proc. Lunar Planet. Sci. Conf. 16th, Part 2, J. Geophys. Res. 91, B4, D277-D303, DOI: 10.1029/JB091iB04p0D277.Google Scholar
  35. McKay, D.S., D.D. Bogard, R.V. Morris, R.L. Korotev, S.J. Wentworth, and P. Johnson (1989), Apollo 15 regolith breccias: Window to a KREEP regolith. In: Proc. Lunar Planet. Sci. Conf. 19th, 19–41.Google Scholar
  36. Meteoritical Bulletin (1970), New falls and discoveries, Meteoretics 5, 2, 85–109.CrossRefGoogle Scholar
  37. Meteoritical Bulletin (2013), The Meteoretical Society, Lunar and Planetary Institute, available from: http://www.lpi.usra.edu/meteor/metbull.php?code=16852.Google Scholar
  38. Metzler, K., U. Ott, K. Welten, M.W. Caffee, and L. Franke (2008), The L3-6 Regolith Breccia Northwest Africa 869: Petrology, noble gases, and cosmogenic radionuclides, Lunar Planet. Sci. 1391, 1120.Google Scholar
  39. Müller, O. (1977), Chemical studies of the Mundrabilla iron meteorite by Neutronactivation, J. Radioanal. Nucl. Ch. 38, 1–2, 499–511, DOI: 10.1007/BF02520224.CrossRefGoogle Scholar
  40. Pesonen, L.J., K. Kuoppamäki, J. Timonen, J. Hartikainen, M Terho, and K. Hartikainen (1997), On the porosity of L and H chondrites. In: 28th Lunar and Planetary Science Conference, Abstract 1684.Google Scholar
  41. Rubin, A.E. (1997), Mineralogy of meteorite groups, Meteorit. Planet. Sci. 32, 231–247, DOI: 10.1111/j.1945-5100.1997.tb01262.x.CrossRefGoogle Scholar
  42. Signer, P., and H.E. Suess (1963), Rare gases in the sun, in the atmosphere, and in meteorites. In: J. Geiss and E.D. Goldberg (eds.), Earth Science and Meteorites, North-Holland, Amsterdam, 241–272.Google Scholar
  43. Stelzner, T., K. Heide, A. Bischoff, D. Weber, P. Scherer, L. Schultz, M. Happel, W. Schron, U. Neupert, R. Michel, R.N. Clayton, T.K. Mayeda, G. Bonani, I. Haidas, S. Ivy-Ochs, and M. Suter (1999), An interdisciplinary study of weathering effects in ordinary chondrites from the Açfer region, Algeria, Meteorit. Planet. Sci. 34, 5, 787–794, DOI: 10.1111/j.1945-5100.1999.tb01391.x.CrossRefGoogle Scholar
  44. Strait, M.M., and G.J. Consolmagno (2004), Micro crack porosity in meteorites: Clues to early history? Eos 85, 33A.Google Scholar
  45. Talwani, M., G. Thompson, B. Dent, H. Kahle, and S. Buck (1973), Traverse gravimeter experiment in Apollo 17, Preliminary Science Report, Spec. Publ., NASA SP-330, 13.1–13.13.Google Scholar
  46. Teiser, J., and G. Wurm (2009), High-velocity dust collisions: Forming planetesimals in a fragmentation cascade with final accretion, Mon. Not. Roy. Astron. Soc. 393, 4, 1584-1594, DOI: 10.1111/j.1365-2966.2008.14289.x.Google Scholar
  47. Tikoo, S.M., J. Gattacceca, B.P. Weiss, and C.R. Suavet (2013), Thermal demagnetization of shock remanent magnetization in extraterrestrial materials. In: Lunar and Planetary Science Conf., 2354, 2 pp.Google Scholar
  48. Verma, H.C., and R.P. Tripathi (2004), Anomalous Mössbauer parameters in the second generation regolith Ghubara meteorite, Meteorit. Planet. Sci. 39, 10, 1755–1759.CrossRefGoogle Scholar
  49. Vinogradov, A.P., and G.P. Vdovykin (1963), Diamonds in stony meteorites, Geochemistry 8, 743–750.Google Scholar
  50. Warren, P.H. (2001), Porosities of lunar meteorites: Strength, porosity, and petrologic screening during the meteorite delivery process, J. Geophys. Res. 106, E5, 10101–10111, DOI: 10.1029/2000JE001283.CrossRefGoogle Scholar
  51. Wasson, J.T. (1974), Meteorites, Springler Verlag, London.CrossRefGoogle Scholar
  52. Wasson, J.T., and G.W. Kallemeyn (2002), The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts, Geochim. Cosmochim. Ac. 66, 13, 2445–2473, DOI: 10.1016/S0016-7037(02)00848-7.CrossRefGoogle Scholar
  53. Wasson, J.T., and J.W. Richardson (2001), Fractionation trends among IVA iron meteorites: contrasts with IIIAB trends, Geochim. Cosmochim. Ac. 65, 6, 951–970, DOI: 10.1016/S0016-7037(00)00597-4.CrossRefGoogle Scholar
  54. Weinke, H.H. (1977), Chemical and mineralogical investigation of a Mundrabilla specimen, Meteoret. Soc. 12, 384–386.Google Scholar
  55. Weisberg, M.K., T.J. McCoy, and A.N. Krot (2006), systematics and evaluation of meteorite classification. In: D.S. Binze, H.Y. Lauretta, and McSween, Jr. (eds.), Meteorites and the Early Solar System II, University of Arizona Press, 19–52.Google Scholar
  56. Welten, K.C. (1999), Concentrations of siderophile elements in nonmagnetic fractions of Antarctic H and L chondrites: A quantitative approach on weathering effects, Metorit. Planet. Sci. 34, 2, 259–270.CrossRefGoogle Scholar
  57. Wieler, R., H. Busemann, and I.A. Franchi (2006), Trapping and modification processes of Noble gases and nitrogen in meteorites and their parent bodies. In: D.S. Lauretta and H.Y. McSween (eds.), Meteorites and the Early Solar System II, University of Arizona Press, 499–521.Google Scholar
  58. Wilkison, S.L., and M.S. Robinson (2000), Bulk density of ordinary chondrite meteorites and implications for asteroidal internal structure, Meteorit. Planet. Sci. 35, 6, 1203–1213.CrossRefGoogle Scholar
  59. Yeomans, D.K., P.G. Antreasian, A. Cheng, D.W. Dunham, R.W. Farquhar, R.W. Gaskell, J.D. Giorgini, C.E. Helfrich, A.S. Konopliv, J.V. McAdams, J.K. Miller, Jr. W.M. Owen, P.C. Thomas, J. Veverka, and B.G. Williams (1999), Estimating the mass of asteroid 433 Eros during the NEAR spacecraft flyby, Science 285, 5427, 560–561, DOI: 10.1126/science.285.5427.560.CrossRefGoogle Scholar

Copyright information

© Nabawy and Rochette 2016

Authors and Affiliations

  1. 1.Department of Geophysical SciencesNational Research CenterCairoEgypt
  2. 2.Aix-Marseille Université, CNRS, IRDCEREGE UM34Aix en ProvenceFrance

Personalised recommendations