Acta Geophysica

, Volume 64, Issue 3, pp 567–588 | Cite as

M9 Tohoku Earthquake Hydro- and Seismic Response in the Caucasus and North Turkey

  • Tamaz L. Chelidze
  • Ia Shengelia
  • Natalya Zhukova
  • Teimuraz Matcharashvili
  • George Melikadze
  • Genady Kobzev
Open Access
Article
  • 47 Downloads

Abstract

Presently, there are a lot of observations on the significant impact of strong remote earthquakes on underground water and local seismicity. Teleseismic wave trains of strong earthquakes give rise to several hydraulic effects in boreholes, namely permanent water level changes and water level oscillations, which closely mimic the seismograms (hydro-seismograms). Clear identical anomalies in the deep borehole water levels have been observed on a large part of the territory of Georgia during passing of the S and Love–Rayleigh teleseismic waves (including also multiple surface Rayleigh waves) of the 2011 Tohoku M9 earthquake. The analysis carried out in order to find dynamically triggered events (non-volcanic tremors) of the Tohoku earthquake by the accepted methodology has not revealed a clear tremor signature in the test area: the Caucasus and North Turkey. The possible mechanisms of some seismic signals of unknown origin observed during passage of teleseismic waves of Tohoku earthquake are discussed.

Key words

Tohoku earthquake Caucasus hydroseismic response tele-seismic waves multiple Rayleigh waves local seismic response 

References

  1. Biot, M.A. (1962), Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33, 4, 1482–1498, DOI: 10.1063/1.1728759.CrossRefGoogle Scholar
  2. Bogomolov, L.M., A.S. Zakupin, and V.N. Sichev (2011), Electrical Impacts on the Earth Crust and Variations of Weak Seismicity, Lambert Academic Publ., Saarbrücken, 408 pp (in Russian).Google Scholar
  3. Bormann, P. (ed.) (2012), New manual of seismological observatory practice (NMSOP-2), IASPEI, GFZ German Research Centre for Geosciences, Potsdam, DOI: 10.2312/GFZ.NMSOP-2, http://nmsop.gfz-potsdam.de.Google Scholar
  4. Brodsky, E.E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga (2003), A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophys. Res. 108, B8, 2390, DOI: 10.1029/2002JB002321.CrossRefGoogle Scholar
  5. Capozza, R., S.M. Rubinstein, I. Barel, M. Urbakh, and J. Fineberg (2011), Stabilizing stick-slip friction, Phys. Rev. Lett. 107, 2, 024301; DOI: 10.1103/PhysRevLett.107.024301.CrossRefGoogle Scholar
  6. Chao, K., Z.G. Peng, C.Q. Wu, C.C. Tang, and C.H. Lin (2012), Remote triggering of non-volcanic tremor around Taiwan, Geophys. J. Int. 188, 1, 301–324, DOI: 10.1111/j.1365-246X.2011.05261.x.CrossRefGoogle Scholar
  7. Chao, K., Z. Peng, H. Gonzalez-Huizar, C. Aiken, B. Enescu, H. Kao, A.A. Velasco, K. Obara, and T. Matsuzawa (2013), A global search for triggered tremor following the 2011 Mw9.0 Tohoku earthquake, Bull. Seismol. Soc. Am. 103, 2B, 1551–1571, DOI: 10.1785/0120120171.CrossRefGoogle Scholar
  8. Chelidze, T., and T. Matcharashvili (2013), Triggering and synchronization of seis-micity: Laboratory and field data — a review. In: K. Konstantinou (ed.), Earthquakes — Triggers, Environmental Impact and Potential Hazards, Nova Science Pub., New York, 165–231.Google Scholar
  9. Chelidze, T. and T. Matcharashvili (2015), Dynamical patterns in seismology. In: C.L. Webber Jr. and N. Marwan (eds.), Recurrence Quantification Analysis: Theory and Best Practices, Springer, Cham Heidelberg, 291–334.Google Scholar
  10. Costain, J.K., and G.A. Bollinger (2010), Review: Research results in Hydroseismicity from 1987 to 2009, Bull. Seismol. Soc. Am. 100, 5A, 1841-1858, DOI: 10.1785/0120090288.Google Scholar
  11. Costain, J.K., and G.A. Bollinger (2010), Review: Research results in Hydroseismicity from 1987 to 2009, Bull. Seismol. Soc. Am. 100, 5A, 1841-1858, DOI: 10.1785/0120090288.Google Scholar
  12. Dvorkin, J., and A. Nur (1993), Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms, Geophysics58, 4, 524–533, DOI: 10.1190/ 1.1443435.CrossRefGoogle Scholar
  13. Gonzalez-Huizar, H., A.A. Velasco, Z. Peng, and R.R. Castro (2012), Remote triggered seismicity caused by the 2011, M9.0 Tohoku-Oki, Japan earthquake, Geophys. Res. Lett. 39, 10, L10302, DOI: 10.1029/2012GL051015.CrossRefGoogle Scholar
  14. Hill, D. and S. Prejean (2009), Dynamic triggering. In: H. Kanamori (ed.), Earthquake Seismology, Elsevier, Amsterdam, 257–293.Google Scholar
  15. Hill, D.P., Z. Peng, D.R. Shelly, and C. Aiken (2013), S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan, earthquake: Observations and theory, Bull. Seismol. Soc. Am. 103, 2B, 1541–1550, DOI: 10.1785/0120120114.CrossRefGoogle Scholar
  16. Matthews, M.V., and P.A. Reasenberg (1988), Statistical methods for investigating quiescence and other temporal seismicity patterns, Pure Appl. Geophys. 126, 2-4, 357–372, DOI: 10.1007/BF00879003.CrossRefGoogle Scholar
  17. Parsons, T., M. Segou, and W. Marzocchi (2014), The global aftershock zone, Tectonophysics618, 1-34, DOI: 10.1016/j.tecto.2014.01.038.Google Scholar
  18. Peng, Z., W. Wang, Q.-F. Chen, and T. Jiang (2010), Remotely triggered seismicity in north China following the 2008 Mw 7.9 Wenchuan earthquake, Earth Planets Space62, 11, 893–898, DOI: 10.5047/eps.2009.03.006.CrossRefGoogle Scholar
  19. Peng, Z., C. Wu, and C. Aiken (2011), Delayed triggering of microearthquakes by multiple surface waves circling the Earth, Geophys. Res. Lett. 38, 4, L04306, DOI: 10.1029/2010GL046373.CrossRefGoogle Scholar
  20. Pfohl, A., L.M. Warren, S. Sit, and M. Brudzinski (2015), Search for tectonic tremor on the Central North Anatolian fault, Turkey, Bull. Seismol. Soc. Am. 105, 3, 1779–1786, DOI: 10.1785/0120140312.CrossRefGoogle Scholar
  21. Prejean, S., and D. Hill (2009), Dynamic triggering of earthquakes. In: R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2600–2621.CrossRefGoogle Scholar
  22. Savage, H.M., and C. Marone (2007), Effects of shear velocity oscillations on stickslip behavior in laboratory experiments, J. Geophys. Res. 112, B2, 112B, DOI: 10.1029/2005JB004238.CrossRefGoogle Scholar
  23. Tary, J.B., M. van der Baan, and D.W. Eaton (2014), Interpretation of resonance frequencies recorded during hydraulic fracturing treatments, J. Geophys. Res.119, 2, 1295–1315, DOI: 10.1002/2013JB010904.CrossRefGoogle Scholar
  24. Wang, C.-Y., and M. Manga (2010), Earthquakes and Water, Lecture Notes in Earth Sciences, Springer, Heidelberg, DOI: 10.1007/978-3-642-00810-8.Google Scholar
  25. Wang, C.-Y., Y. Chia, P.-L. Wang, and D. Dreger (2009), Role of S waves and Love waves in coseismic permeability enhancement, Geophys. Res. Lett.36, 9, L09404, DOI: 10.1029/2009GL037330.CrossRefGoogle Scholar
  26. Zhang, Y., and F. Huang (2011), Mechanism of different coseismic water-level changes in wells with similar epicentral distances of intermediate field, Bull. Seismol. Soc. Am. 101, 4, 1531–1541, DOI: 10.1785/0120100104.CrossRefGoogle Scholar

Copyright information

© Chelidze et al. 2016

Authors and Affiliations

  • Tamaz L. Chelidze
    • 1
  • Ia Shengelia
    • 2
  • Natalya Zhukova
    • 1
  • Teimuraz Matcharashvili
    • 1
    • 2
  • George Melikadze
    • 1
  • Genady Kobzev
    • 1
  1. 1.M. Nodia Institute of GeophysicsJavakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Ilia State UniversityTbilisiGeorgia

Personalised recommendations