Acta Geophysica

, Volume 64, Issue 5, pp 1731–1754 | Cite as

Extreme Historical Droughts in the South-Eastern Alps — Analyses Based on Standardised Precipitation Index

Open Access
Article
  • 69 Downloads

Abstract

Droughts are natural phenomena affecting the environment and human activities. There are various drought definitions and quantitative indices; among them is the Standardised Precipitation Index (SPI). In the drought investigations, historical events are poorly characterised and little data are available. To decipher past drought appearances in the southeastern Alps with a focus on Slovenia, precipitation data from HISTALP data repository were taken to identify extreme drought events (SPI ≤ -2.00) from the second half of the 19th century to the present day. Several long-term extreme drought crises were identified in the region (between the years 1888 and 1896; after World War I, during and after World War II). After 1968, drought patterns detected with SPI changed: shorter, extreme droughts with different time patterns appeared. SPI indices of different time spans showed correlated structures in space and between each other, indicating structured relations.

Key words

drought standardized precipitation index drought indicator diagram HISTALP data set south-eastern Alps 

References

  1. Abramowitz, M., and I. Stegun (eds.) (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publ., New York.Google Scholar
  2. Auer, I., R. Bohm, A. Jurkovic, W. Lipa, A. Orlik, R. Potzmann, W. Schoner, M. Ungersbock, C. Matulla, K. Briffa, P. Jones, D. Efthymiadis, M. Brunetti, T. Nanni, M. Maugeri, L. Mercalli, O. Mestre, J. M. Moisselin, M. Begert, G. Muller-Westermeier, V. Kveton, O. Bochnicek, P. Stastny, M. Lapin, S. Szalai, T. Szentimrey, T. Cegnar, M. Dolinar, M. Gajic-Capka, K. Zaninovic, Z. Majstorovic, and E. Nieplova (2007), HISTALP — historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol. 27, 1, 17–46, DOI: 10.1002/joc.1377.CrossRefGoogle Scholar
  3. Bobée, B., and F. Ashkar (1991), The Gamma Family and Derived Distributions Applied in Hydrology, Water Resources Publications, Littleton.Google Scholar
  4. Böhm, R., P.D. Jones, J. Hiebl, D. Frank, M. Brunetti, and M. Maugeri (2010), The early instrumental warm-bias: a solution for long central European temperature series 1760–2007, Climate Change 101, 1–2, 41–67, DOI: 10.1007/s10584-009-9649-4.CrossRefGoogle Scholar
  5. Brázdil, R., M. Trnka, P. Dobrovolný, K. Chromá, P. Hlavinka, and Z. Žalud (2009), Variability of droughts in the Czech Republic, 1881–2006, Theor. Appl. Climatol. 97, 3–4, 297–315, DOI: 10.1007/s00704-008-0065-x.CrossRefGoogle Scholar
  6. Briffa, K.R., G. van der Schrier, and P.D. Jones (2009), Wet and dry summers in Europe since 1750: evidence of increasing drought, Int. J. Climatol. 29, 13, 1894–1905, DOI: 10.1002/joc.1836.CrossRefGoogle Scholar
  7. Dracup, J.A., K.S. Lee, and E.G. Paulson (1980), On the definition of droughts, Water Resour. Res. 16, 2, 297–302, DOI: 10.1029/WR016i002p00297.CrossRefGoogle Scholar
  8. Edwards, D.C. (1997), Characteristics of 20th century drought in the United States at multiple time scales, M.Sc. Thesis, Department of Atmospheric Science, Colorado State University, Fort Collins, USA.Google Scholar
  9. Gocic, M., and S. Trajkovic (2014), Spatiotemporal characteristics of drought in Serbia, J. Hydrol. 510, 110–123, DOI: 10.1016/j.jhydrol.2013.12.030.CrossRefGoogle Scholar
  10. Guttman, N.B. (1998), Comparing the Palmer drought index and the standardizet precipitation index, J. Am. Water Resour. Assoc. 34, 1, 113–121, DOI: 10.1111/j.1752-1688.1998.tb05964.x.CrossRefGoogle Scholar
  11. Guttman, N.B. (1999), Acepting the standardized precipitation index: A calculation algorithm, J. Am. Water Resour. Assoc. 35, 2, 311–322, DOI: 10.1111/j.1752-1688.1999.tb03592.x.CrossRefGoogle Scholar
  12. Hannaford, J., N. Lloyd-Hughes, C. Keef, S. Parry, and C. Prudhomme (2011), Examing the large-scale spatial coherence of European drought using regional indicators of precipitation and steramflow deficit, Hydrol. Process. 25, 7, 1146–1162, DOI: 10.1002/hyp.7725.CrossRefGoogle Scholar
  13. Keyantash, J., and J.A. Dracup (2002), The quantification of drought: an evaluation of drought indices, Bull. Am. Meteorol. Soc. 83, 8, 1167–1180.CrossRefGoogle Scholar
  14. Kim, D.W., H.R. Byun, K.S. Choi, and S.B. Oh (2011), A spatiotemporal analysis of historical droughts in Korea, J. Appl. Meteorol. Climatol. 50, 9, 1895–1912, DOI: 10.1175/2011JAMC2664.1.CrossRefGoogle Scholar
  15. Kingston, D.G., J.H. Stagge, L.M. Tallaksen, and D.M. Hannah (2015), Europeanscale drought: Understanding connection between atmospheric circulation and meteorological drough indices, J. Climate 28, 2, 505–516, DOI: 10.1175/JCLI-D-14-00001.1.CrossRefGoogle Scholar
  16. Lloyd-Hughes, B., and M.A. Saunders (2002), A drought climatology for Europe, Int. J. Climatol. 22, 13, 1571–1592, DOI: 10.1002/joc.846.CrossRefGoogle Scholar
  17. McKee, T.B., N.J. Doesken, and J. Kleist (1993), The relationship of drought frequency and duration to time scales. In: Proc. Eight Conference on Applied Climatology, Anaheim, California, USA.Google Scholar
  18. McKee, T.B., N.J. Doesken, and J. Kleist (1995), Drought monitoring with multiple time scales. In: Proc. 9th AMS Conference on Applied Climatology, Dallas, USA, American Meteorological Society.Google Scholar
  19. Mishra, A.K., and V.P. Singh (2010), A review of drought concepts, J. Hydrol. 391, 1–2, 204–216, DOI: 10.1016/j.jhydrol.2010.07.012.Google Scholar
  20. Pučnik, J. (1980), Velika Knjiga o Vremenu, Cankarjeva Založba, Ljubljana (in Slovenian).Google Scholar
  21. Quiring, S.M. (2009), Monitoring drought: An evaluation of meteorological drought indices, Geography Compass 3, 1, 64–88, DOI: 10.1111/j.1749-8198.2008.00207.x.CrossRefGoogle Scholar
  22. Rakovec, J., and T. Vrhovec (2000), Osnove meteorologije za naravoslovce in tehnike, Društvo Matematikov, Fizikov in Astronomov Slovenije, Ljubljana (in Slovenian).Google Scholar
  23. Sheffield, J., and E.F. Wood (2011), Drought — Past Problems and Future Scenarios, Earthscan, London.Google Scholar
  24. Sousa, P.M., R.M. Trigo, P. Aizpurua, R. Nieto, L. Gimeno, and R. Garcia-Herrera (2011), Trends and extremes of drought indices throuhout the 20th century in the Mediterranean, Nat. Hazards Earth Syst. Sci. 11, 1, 33–51, DOI: 10.5194/nhess-11-33-2011.CrossRefGoogle Scholar
  25. Spraggs, G., L. Peaver, P. Jones, and P. Ede (2015), Re-construction of historic drought in the Anglian Region (UK) over the period 1798–2010 and the implications for water resources and drought management, J. Hydrol. 526, 231–252, DOI: 10.1016/j.jhydrol.2015.01.015.CrossRefGoogle Scholar
  26. Sušnik, A., T. Pogacar, G. Gregoric, J. Roškar, and A. Ceglar (2010), Establishment of agricultural drought monitoring at different spatial scales in southeastern Europe, Acta Agricult. Slov. 95, 3, 231–243, DOI: 10.2478/v10014-010-0015-z.Google Scholar
  27. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens (2002), The Drought Monitor, Bull. Am. Meteorol. Soc. 83, 8, 1181–1190, DOI: 10.1175/1520-0477(2002)083<1181%3ATDM>2.3.CO%3B2.CrossRefGoogle Scholar
  28. Wilhite, D.A., and M.H. Glantz (1985), Understanding the drought phenomenon: The role of definitions, Water Int. 10, 111–120, DOI: 10.1080/02508068508686328.CrossRefGoogle Scholar
  29. Wilks, D.S. (1995), Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego.Google Scholar
  30. WMO (2006), Drought monitoring and early warning: Concepts, progress and future challenges, World Meteorological Organization Rep. WMO-1006, 24 pp. available from: http://www.wamis.org/agm/pubs/brochures/WMO1006e.pdf.Google Scholar
  31. Wu, H., M.J. Hayes, A. Weiss, and Q. Hu (2001), An evaluation of the standardized precipitation index, the China-Z index and the statistical Z-score, Int. J. Climatol. 21, 6, 745–758, DOI: 10.1002/joc.658.CrossRefGoogle Scholar
  32. Wu, H., M.J. Hayes, D.A. Wilhite, and M.D. Svoboda (2005), The effect of the lenght of record on the standardized precipitation index calculation, Int. J. Climatol. 25, 4, 505–520, DOI: 10.1002/joc.1142.CrossRefGoogle Scholar

Copyright information

© Brenćić 2016

Authors and Affiliations

  1. 1.Department of Geology, Natural Sciences and Engineering FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations