Acta Geophysica

, Volume 64, Issue 1, pp 76–100 | Cite as

Shear Wave Splitting Analysis to Estimate Fracture Orientation and Frequency Dependent Anisotropy

  • Raoof Gholami
  • Ali Moradzadeh
  • Vamegh Rasouli
  • Javid Hanachi
Open Access
Article

Abstract

Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequencydependent anisotropy analysis, it was found that the time delays in shearwaves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research.

Keyword

shear wave splitting Vertical Seismic Profile fracture frequency dependent anisotropy southern part of Iran 

References

  1. Alford, R.M. (1986), Shear data in the presence of azimuthal anisotropy: Dilley, Texas. In: 56th SEG Annual Meeting, 2–6 November 1986, Houston, USA, Society of Exploration Geophysicists, Expanded abstracts, SEG-1986-0476,476-479.Google Scholar
  2. Bayuk, I.O., and E.M. Chesnokov (1998), Correlation between elastic and transport properties of porous cracked anisotropic media, Phys. Chem. Earth 23, 3, 361–366, DOI: 10.1016/S0079-1946(98)00038-X.CrossRefGoogle Scholar
  3. Chapman, M., S. Maultzsch, E. Liu, and X.Y. Li (2003), The effect of fluid saturation in an anisotropic multi-scale equant porosity model, J. Appl. Geophys. 54, 3–4, 191–202, DOI: 10.1016/j.jappgeo.2003.01.003.CrossRefGoogle Scholar
  4. Chesnokov, E.M., Y.A. Kukharenko, and P.Y. Kukharenko (1998), Frequencydependence of physical parameters of microinhomogeneous media: space statistics, Rev. Inst. Fr. Petrol. 53, 5, 729–734, DOI: 10.2516/ogst:1998065.CrossRefGoogle Scholar
  5. Chesnokov, E.M., J.H. Queen, A.A. Vichorev, H.B. Lynn, J.M. Hooper, I.O. Bayuk, J.A. Castagna, and B. Roy (2001), Frequency dependent anisotropy. In: 71st SEG Annual Meeting, 9–14 September 2001, San Antonio, USA, Society of Exploration Geophysicists, Expanded abstracts, 2120–2123, DOI: 10.1190/1.1816569.Google Scholar
  6. Crampin, S. (1985), Evaluation of anisotropy by shear-wave splitting, Geophysics 50, 1, 142–152, DOI: 10.1190/1.1441824.CrossRefGoogle Scholar
  7. Crampin, S. (1987), Geological and industrial implications of extensive-dilatancy anisotropy, Nature 328, 6130, 491–496, DOI: 10.1038/328491a0.CrossRefGoogle Scholar
  8. Crampin, S., and J.H. Lovell (1991), A decade of shear-wave splitting in the Earth’s crust: what does it mean? What use can we make of it? And what should we do next? Geophys. J. Int. 107, 3, 387–407, DOI: 10.1111/j.1365-246X.1991.tb01401.x.CrossRefGoogle Scholar
  9. Crampin, S., and S. Peacock (2005), A review of shear-wave splitting in the compliant crack-critical anisotropic Earth, Wave Motion 41 1, 59–77, DOI:10.1016/j.wavemoti.2004.05.006.CrossRefGoogle Scholar
  10. Gulati, J.S., R.R. Stewart, and J.M. Parkin (2004), Analyzing three-component 3D vertical seismic profiling data, Geophysics 69, 2, 386–392, DOI: 10.1190/1.1707057.CrossRefGoogle Scholar
  11. Hudson, J.A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. Int. 64, 1, 133–150, DOI: 10.1111/j.1365-246X.1981.tb02662.x.CrossRefGoogle Scholar
  12. Hudson, J.A., E. Liu, and S. Crampin (1996), The mechanical properties of materials with interconnected cracks and pores, Geophys. J. Int. 124, 1, 105–112, DOI: 10.1111/j.1365-246X.1996.tb06355.x.CrossRefGoogle Scholar
  13. Hudson, J.A., T. Pointer, and E. Liu (2001), Effective-medium theories for fluidsaturated materials with aligned cracks, Geophys. Prospect. 49, 5, 509–522, DOI: 10.1046/j.1365-2478.2001.00272.x.CrossRefGoogle Scholar
  14. Li, X.Y., and S. Crampin (1993), Linear-transform techniques for processing shearwaves anisotropy in four-component seismic data, Geophysics 58, 2, 240–256, DOI: 10.1190/1.1443409.CrossRefGoogle Scholar
  15. Li, X.Y., Y.J. Liu, E. Liu, F. Shen, L. Qi, and Q. Shouli (2003), Fracture detection using land 3D seismic data from the Yellow River Delta, China, The Leading Edge 22, 7, 680–683, DOI: 10.1190/1.1599696.CrossRefGoogle Scholar
  16. Liu, E., J.A. Hudson, and T. Pointer (2000), Equivalent medium representation of fractured rock, J. Geophys. Res. 105, B2, 2981–3000, DOI: 10.1029/1999JB900306.CrossRefGoogle Scholar
  17. Liu, E., J.H. Queen, X.Y. Li, M. Chapman, S. Maultzsch, H.B. Lynn, and E.M. Chesnokov (2003), Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at Bluebell-Altamont Field, Utah, J. Appl. Geophys. 54, 3-4, 319–333, DOI: 10.1016/j.jappgeo.2003.01.004.CrossRefGoogle Scholar
  18. Liu, J., X. Zeng, J. Xia, and M. Mao (2012), The separation of P- and S-wave components from three-component crosswell seismic data, J. Appl. Geophys. 82, 163–170, DOI: 10.1016/j.jappgeo.2012.03.007.CrossRefGoogle Scholar
  19. Long, M.D. (2010), Frequency-dependent shear wave splitting and heterogeneous anisotropic structure beneath the Gulf of California region, Phys. Earth Planet. In. 182, 1–2, 59–72, DOI: 10.1016/j.pepi.2010.06.005.CrossRefGoogle Scholar
  20. Long, M.D., M.V. de Hoop, and R.D. van der Hilst (2008), Wave-equation shear wave splitting tomography, Geophys. J. Int. 172, 1, 311–330, DOI: 10.1111/j.1365-246X.2007.03632.x.CrossRefGoogle Scholar
  21. Lynn, H.B., K.M. Simon, C.R. Bates, M. Layman, R. Schneider, and M. Jones (1995), Use of anisotropy in P-wave and S-wave data for fracture characterization in a naturally fractured gas reservoir, The Leading Edge 14, 8, 887–893, DOI: 10.1190/1.1437179.CrossRefGoogle Scholar
  22. Lynn, H.B., K.M. Simon, and C.R. Bates (1996), Correlation between P-wave AVOA and S-wave traveltime anisotropy in a naturally fractured gas reservoir, The Leading Edge 15, 8, 931–935, DOI: 10.1190/1.1437394.CrossRefGoogle Scholar
  23. Lynn, H.B., W.E. Beckham, K.M. Simon, C.R. Bates, M. Layman, and M. Jones (1999), P-wave and S-wave azimuthal anisotropy at a naturally fractured gas reservoir, Bluebell-Altamont Field, Utah, Geophysics 64, 4, 1312–1328, DOI: 10.1190/1.1444636.CrossRefGoogle Scholar
  24. MacLeod, M.K., R.A. Hanson, M.J. Hadley, K.J. Reynolds, D. Lumley, S. McHugo, and A. Probert (1999), The Alba Field OBC seismic survey. In: 6th Int. Congress of Brazilian Geophysical Society, Extended abstracts, 6–25.Google Scholar
  25. Magnitsky, V.A., and E.M. Chesnokov (1986), Geophysics of anisotropic media: state of art, Izv. — Phys. Solid Earth 22, 11, 867–872.Google Scholar
  26. Marson-Pidgeon, K., and M.K. Savage (1997), Frequency-dependent anisotropy in Wellington, New Zealand, Geophys. Res. Lett. 24, 24, 3297–3300, DOI: 10.1029/97GL03274.CrossRefGoogle Scholar
  27. NISOC (2005), NISOC R&D Solutions Project #1, casing collapse (well integrity); Phase 1 — concept and feasibility study, National Iranian South Oil Company, Ahwaz, Iran.Google Scholar
  28. Nuzzo, L., and T. Quarta (2004), Improvement in GPR coherent noise attenuation using t—p and wavelet transforms, Geophysics 69, 3, 789–802, DOI: 10.1190/1.1759465.CrossRefGoogle Scholar
  29. Parra, J.O. (2000), Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy, Geophysics 65, 1, 202–210, DOI: 10.1190/1.1444711.CrossRefGoogle Scholar
  30. Peacock, S., S. Crampin, D.C. Booth, and J.B. Fletcher (1988), Shear wave splitting in the Anza seismic gap, southern California: temporal variations as possible precursors, J. Geophys. Res. 93, B4, 3339–3356, DOI: 10.1029/JB093iB04p03339.CrossRefGoogle Scholar
  31. Pointer, T., E. Liu, and J.A. Hudson (2000), Seismic wave propagation in cracked porous media, Geophys. J. Int. 142, 1, 199–231, DOI: 10.1046/j.1365-246x.2000.00157.x.CrossRefGoogle Scholar
  32. Qian, Z., X. Li, and M. Chapman (2008), Fracture characterization with azimuthal attribute analysis of P-S wave data: Modelling and application. In: 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, Extended abstracts, DOI: 10.3997/2214-4609.20148062.Google Scholar
  33. Sato, H., and M.C. Fehler (1997), Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer, Berlin, DOI: 10.1007/978-3-540-89623-4.Google Scholar
  34. Theune, U., M.D. Sacchi, and D.R. Schmitt (2006), Least-squares local Radon transforms for dip-dependent GPR image decomposition, J. Appl. Geophys. 59, 3, 224–235, DOI: 10.1016/j.jappgeo.2005.10.003.CrossRefGoogle Scholar
  35. Thomsen, L. (1995), Elastic anisotropy due to aligned cracks in porous rock, Geophys. Prospect. 43, 6, 805–829, DOI: 10.1111/j.1365-2478.1995.tb00282.x.CrossRefGoogle Scholar
  36. Thomsen, L.A., O.I. Barkved, B. Haggard., J.H. Kommedal, and B. Rosland (1997), Converted-wave imaging of Valhall reservoir. In: 59th EAGE Conference and Exhibition, Extended abstracts, B048.Google Scholar
  37. Tod, S.R., and E. Liu (2002), Frequency-dependent anisotropy due to fluid flow in bed limited cracks, Geophys. Res. Lett. 29, 15, 1749, DOI: 10.1029/2002GL015369.CrossRefGoogle Scholar
  38. Tsvankin, I. (1997), Reflection moveout and parameter estimation for horizontal transverse isotropy, Geophysics 62, 2, 614–629, DOI: 10.1190/1.1444170.CrossRefGoogle Scholar
  39. Vetri, L., E. Loinger, J. Gaiser, A. Grandi, and H. Lynn (2003), 3D/4C Emilio: Azimuth processing and anisotropy analysis in a fractured carbonate reservoir, The Leading Edge 22, 7, 675–679, DOI: 10.1190/1.1599695.CrossRefGoogle Scholar
  40. Werner, U., and S.A. Shapiro (1999), Frequency-dependent shear-wave splitting in thinly layered media with intrinsic anisotropy, Geophysics 64, 2, 604–608, DOI: 10.1190/1.1444567.CrossRefGoogle Scholar
  41. Zhu, X., P. Valasek, B. Roy, S. Shaw, J. Howell, S. Whitney, N.D. Whitmore, and P. Anno (2008), Recent applications of turning-ray tomography, Geophysics 73, 5, VE243–VE254, DOI: 10.1190/1.2957894.CrossRefGoogle Scholar

Copyright information

© Gholami et al. 2015

Authors and Affiliations

  • Raoof Gholami
    • 1
  • Ali Moradzadeh
    • 1
    • 2
  • Vamegh Rasouli
    • 3
  • Javid Hanachi
    • 4
  1. 1.Curtin UniversityDepartment of Chemical and Petroleum EngineeringSarawakMalaysia
  2. 2.Department of Mining, Petroleum and GeophysicsShahrood University of TechnologyShahroodIran
  3. 3.Department of Petroleum EngineeringUniversity of North DakotaGrand ForksUSA
  4. 4.Petroleum GeologyIran

Personalised recommendations