Acta Geophysica

, Volume 63, Issue 5, pp 1368–1404 | Cite as

Numerical Simulation of Response Characteristics of Audio-magnetotelluric for Gas Hydrate in the Qilian Mountain Permafrost, China

Open Access
Article
  • 63 Downloads

Abstract

Audio-magnetotelluric (AMT) method is a kind of frequency-domain sounding technique, which can be applied to gas hydrate prospecting and assessments in the permafrost region due to its high frequency band. Based on the geological conditions of gas hydrate reservoir in the Qilian Mountain permafrost, by establishing high-resistance abnormal model for gas hydrate and carrying out numerical simulation using finite element method (FEM) and nonlinear conjugate gradient (NLCG) method, this paper analyzed the application range of AMT method and the best acquisition parameters setting scheme. When porosity of gas hydrate reservoir is less than 5%, gas hydrate saturation is greater than 70%, occurrence scale is less than 50 m, or bury depth is greater than 500 m, AMT technique cannot identify and delineate the favorable gas hydrate reservoir. Survey line should be more than twice the length of probable occurrence scale, while tripling the length will make the best result. The number of stations should be no less than 6, and 11 stations are optimal. At the high frequency section (10∼1000 Hz), there should be no less than 3 frequency points, 4 being the best number.

Key words

Qilian Mountain permafrost gas hydrate AMT response characteristic numerical simulation 

References

  1. Abdelzaher, M., J. Nishijima, G. EI-Qady, E. Aboud, O. Masoud, M. Soliman, and S. Ehara (2011), Gravity and magnetotelluric investigations to elicit the origin of Hammam Faraun hot spring, Sinai Peninsula, Egypt, Acta Geophys. 59, 3, 633–656, DOI: 10.2478/s11600-011-0006-4.CrossRefGoogle Scholar
  2. Archie, G.E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146, 1, 54–62, DOI: 10.2118/942054-G.CrossRefGoogle Scholar
  3. Balyavskii, V.V., and V.V. Sukhoi (2004), The method of audio-frequency magnetotelluric sounding in mineral exploration, Izv. — Phys. Solid Earth. 40, 6, 515–533.Google Scholar
  4. Boswell, R., and T.S. Collett (2011), Current perspectives on gas hydrate resources, Energy Environ. Sci. 4, 1206–1215, DOI: 10.1039/c0ee00203h.CrossRefGoogle Scholar
  5. Boswell, R., G. Moridis, M. Reagan, and T.S. Collett (2011), Gas hydrate accumulation types and their application to numerical simulation. In: Proc. 7th Int. Conf. on Gas Hydrates (ICGH 2011), 17–22 July 2011, Edinburgh, Scotland, Manuscript No. 130.Google Scholar
  6. Bronner, G., and J.P. Fourno (1992), Audio-magnetotelluric investigation of allochthonous iron formations in the Archaean Reguibat shield (Mauritania): structural and mining implications, J. Afr. Earth Sci. 15, 3-4, 341–351, DOI: 10.1016/0899-5362(92)90019-9.CrossRefGoogle Scholar
  7. Bybee, K. (2004), Natural gas technology/monetization: Overview of the Mallik gas-hydrate production research well, J. Petrol. Technol. 56, 4, 53–54, DOI: 10.2118/0404-0053-JPT.CrossRefGoogle Scholar
  8. Carcione, J.M., and D. Gei (2004), Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada, J. Appl. Geophys. 56, 1, 73–78, DOI: 10.1016/j.jappgeo.2004.04. 001.CrossRefGoogle Scholar
  9. Clerc, G., J.P. Décriaud, G. Doyen, M. Halbwachs, M. Henrotte, J. Rémy, and X.C. Zhang (1984), An automatic audio-magnetotelluric equipment, controlled by microprocessor, for the telesurveillance of the volcano Momotombo (Nicaragua), Surv. Geophys. 6, 3–4, 291–304, DOI: 10.1007/ BF01465544.CrossRefGoogle Scholar
  10. Coggon, J.H. (1971), Electromagnetic and electrical modeling by the finite element method, Geophysics 36, 1, 132–155, DOI: 10.1190/1.1440151.CrossRefGoogle Scholar
  11. Collett, T.S. (2002), Energy resource potential of natural gas hydrates, AAPG Bull. 86, 11, 1971–1992.Google Scholar
  12. Collett, T.S. (2005), Results at Mallik highlight progress in gas hydrate energy resource research and development, Petrophysics 46, 3, 237–243.Google Scholar
  13. Collett, T.S., M.W. Lee, W.F. Agena, J.J. Miller, K.A. Lewis, M.V. Zyrianova, R. Boswell, and T.L. Inks (2011), Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope, Mar. Petrol. Geol. 28, 2, 279–294, DOI: 10.1016/j.marpetgeo.2009.12.001.CrossRefGoogle Scholar
  14. Constable, S.C., R.L. Parker, and C.G. Constable (1987), Occam’s inversion: A practical algorithm for generating smooth models from electromagenetic sounding data, Geophysics 52, 3, 289–300, DOI: 10.1190/1.1442303.CrossRefGoogle Scholar
  15. De Lugão, P.P., and P.E. Wannamaker (1996), Calculating the two-dimensional magnetotelluric Jacobian in finite elements using reciprocity, Geophys. J. Int. 127, 3, 806–810, DOI: 10.1111/j.1365-246X.1996.tb04060.x.CrossRefGoogle Scholar
  16. Dickens, G.R. (2001), The potential volume of oceanic methane hydrates with variable external conditions, Org. Geochem. 32, 10, 1179–1193, DOI: 10.1016/ S0146-6380(01)00086-9.CrossRefGoogle Scholar
  17. Fu, J.H., and L.F. Zhou (1998), Carboniferous-Jurassic stratigraphic provinces of the southern Qilian basin and their petrogeological features, Northwest Geosci. 19, 2, 47–54 (in Chinese).Google Scholar
  18. Goldberg, S., and Y. Rotstein (1982), A simple form of presentation of magneto-telluric data using the Bostick transform, Geophys. Prosp. 30, 2, 211–216, DOI: 10.1111/j.1365-2478.1982.tb01299.x.CrossRefGoogle Scholar
  19. Guo, X.W., and Y.H. Zhu (2011), Well logging characteristics and evaluation of hydrates in Qilian Mountain permafrost, Geol. Bull. China 30, 12, 1869–1873 (in Chinese).Google Scholar
  20. Hestenes, M.R. (1973), Iterative methods for solving linear equations, J. Optimiz. Theory App. 11, 4, 323–334, DOI: 10.1007/BF00932484.CrossRefGoogle Scholar
  21. Hestenes, M.R., and E. Stiefel (1952), Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand. 49, 6, 409–436, DOI: 10.6028/jres.049.044.CrossRefGoogle Scholar
  22. Hu, Z.Z., X.Y. Hu, and Z.X. He (2006), Pseudo-three-dimensional magnetotelluric inversion using nonlinear conjugate gradients, Chinese J. Geophys. 49, 4, 1111–1120, DOI: 10.1002/cjg2.934.CrossRefGoogle Scholar
  23. Huo, Y.Y., and M. Zhang (2009), Full waveform inversion of gas hydrate reflectors in Northern South China Sea, Acta Geophys. 57, 3, 716–727, DOI: 10.2478/ s11600-009-0011-z.CrossRefGoogle Scholar
  24. Israil, M. (2006), Delineation of layer boundaries from smooth models obtained from the geoelectrical sounding data inversion, Acta Geophys. 54, 2, 126–141, DOI: 10.2478/s11600-006-0012-0.CrossRefGoogle Scholar
  25. Koh, C.A., A.K. Sum, and E.D. Sloan (2012), State of the art: Natural gas hydrates as a natural resource, J. Nat. Gas Sci. Eng. 8, 132–138, DOI: 10.1016/ j.jngse.2012.01.005.CrossRefGoogle Scholar
  26. Lee, M.W., and T.S. Collett (2011), In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope, Mar. Petrol. Geol. 28, 2, 439–449, DOI: 10.1016/j.marpetgeo.2009.06.007.CrossRefGoogle Scholar
  27. Li, X.S., B. Yang, G. Li, and B. Li (2012), Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain permafrost, Ind. Eng. Chem. Res. 51, 11, 4424–4432, DOI: 10.1021/ie201940t.CrossRefGoogle Scholar
  28. Lin, Z.Z., Y. Li, W.L. Gao, G.S. Kong, and S.Z. Sun (2013), Physical character analysis of logging data for natural gas hydrate in Qilian Mountain permafrost area, Geophys. Geochem. Explor. 37, 5, 834–838.Google Scholar
  29. Lu, Z.Q., Y.H. Zhu, Y.Q. Zhang, H.J. Wen, Y.H. Li, and C.L. Liu (2011), Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China, Cold Reg. Sci. Technol. 66, 2-3, 93–104, DOI: 10.1016/j. coldregions.2011.01.008.CrossRefGoogle Scholar
  30. Lu, Z.Q., Y.H. Zhu, H. Liu, Y.Q. Zhang, C.S. Jin, X. Huang, and P.K. Wang (2013a), Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai, Mar. Petrol. Geol. 43, 341–348, DOI: 10.1016/ j.marpetgeo.2013.01.003.CrossRefGoogle Scholar
  31. Lu, Z.Q., X.H. Xue, Z.W. Liao, and H. Liu (2013b), Source rocks for gases from gas hydrate and their burial depth in the Qilian Mountain permafrost, Qinghai: Results from thermal stimulation, Energy Fuels 27, 12, 7233–7244, DOI: 10.1021/ef4010797.CrossRefGoogle Scholar
  32. Mackie, R.L., J.T. Smith, and T.R. Madden (1994), Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example, Radio Sci. 29, 4, 923–935, DOI: 10.1029/94RS00326.CrossRefGoogle Scholar
  33. Moridis, G.J., T.S. Collett, M. Pooladi-Darvish, S. Hancock, C. Santamarina, R. Boswell, T. Kneafsey, J. Rutqvist, M.B. Kowalsky, M.T. Reagan, E.D. Sloan, A.K. Sum, and C.A. Koh (2011), Challenges, uncertainties, and issues facing gas production from gas hydrate deposits, SPE Reserv. Eval. Eng. 14, 1, 76–112, SPE-131792, DOI: 10.2118/131792-PA.CrossRefGoogle Scholar
  34. Newman, G.A., and D.L. Alumbaugh (1997), 3D electromagnetic modeling using staggered finite differences. In: 1997 IEEE Int. Geosci. Remote Sens. Symp. “Remote Sensing — A Scientific Vision for Sustainable Development”, 3–8 August 1997, Singapore, Vol. 2, 929-932, DOI: 10.1109/IGARSS.1997. 615301.Google Scholar
  35. Newman, G.A., and D.L. Alumbaugh (2000), Three-dimensional magnetotelluric inversion using non-linear conjugate gradients, Geophys. J. Int. 140, 2, 410–424, DOI: 10.1046/j.1365-246x.2000.00007.x.CrossRefGoogle Scholar
  36. Ogawa, Y., M. Uyeshima, Y. Honkura, H. Utada, and S. Koyama (1994), Audiofrequency magnetotelluric imaging of an active strike-slip fault, J. Geomagn. Geoelectr. 46, 5, 403–408, DOI: 10.5636/jgg.46.403.CrossRefGoogle Scholar
  37. Pang, S.J., X. Su, H. He, Q. Zhao, Y.H. Zhu, P.K. Wang, Y.H. Li, and Q.H. Li (2013), Geological controlling factors of gas hydrate occurrence in Qilian Mountain permafrost, China, Earth Sci. Front. 20, 1, 223–239 (in Chinese).Google Scholar
  38. Rodi, W., and R.L. Mackie (2001), Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics 66, 1, 174–187, DOI: 10.1190/ 1.1444893.CrossRefGoogle Scholar
  39. Ryan, W.B.F., S.M. Carbotte, J.O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky (2009), Global multi-resolution topography synthesis, Geochem. Geophys. Geosyst. 10, 3, DOI: 10.1029/2008GC002332.CrossRefGoogle Scholar
  40. Santos, F.A.M., A. Trota, A. Soares, R. Luzio, N. Lourenço, L. Matos, E. Almeida, J.L. Gaspar, and J.M. Miranda (2006), An audio- magnetotelluric investigation in Terceira Island (Azores), J. Appl. Geophys. 59, 4, 314–323, DOI: 10.1016/j.jappgeo.2005.12.001.CrossRefGoogle Scholar
  41. Santos, F.A.M., A.R.A. Afonso, and A. Dupis (2007), 2D joint inversion of dc and scalar audio-magnetotelluric data in the evaluation of low enthalpy geo-thermal fields, J. Geophys. Eng. 4, 1, 53–62, DOI: 10.1088/1742-2132/ 4/1/007.CrossRefGoogle Scholar
  42. Schnegg, P.A., B.V. Lequang, G. Fischer, and J.T. Weaver (1983), Audio-magnetotelluric study of a structure with a reverse fault, J. Geomagn. Geoelectr. 35, 11–12, 653–671, DOI: 10.5636/jgg.35.653.CrossRefGoogle Scholar
  43. Sloan, E.D., Jr. (1998), Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dek-ker Inc., New York.Google Scholar
  44. Smith, J.T., and J.R. Booker (1991), Rapid inversion of two- and three-dimensional magnetotelluric data, J. Geophys. Res. 96, B3, 3905–3922, DOI: 10.1029/ 90JB02416.CrossRefGoogle Scholar
  45. Spichak, V.V. (2012), Evaluation of the feasibility of recovering the magma chamber’s parameters by 3D Bayesian statistical inversion of synthetic MT data, Acta Geophys. 60, 3, 942–958, DOI: 10.2478/s11600-012-0008-x.CrossRefGoogle Scholar
  46. Strangway, D.W., C.M. Swift, Jr., and R.C. Holmer (1973), The application of audio-frequency magnetotellurics (AMT) to mineral exploration, Geophysics 38, 6, 1159–1175, DOI: 10.1190/1.1440402.CrossRefGoogle Scholar
  47. Sun, Z.J., Z.B. Yang, H. Mei, A.H. Qin, F.G. Zhang, Y.L. Zhou, S.Y. Zhang, and B.W. Mei (2014), Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China, J. Geochem. Explor. 139, 160–169, DOI: 10.1016/j.gexplo. 2013.10.006.CrossRefGoogle Scholar
  48. Tikhonov, A.N., and V.Y. Arsenin (1978), Solutions of ill-posed problems, Math. Comput. 32, 144, 1320–1322, DOI: 10.2307/2006360.CrossRefGoogle Scholar
  49. Wang, P.K., Y.H. Zhu, Z.Q. Lu, X. Huang, S.J. Pang, and S. Zhang (2014), Gas hydrate stability zone migration occurred in the Qilian Mountain permafrost, Qinghai, Northwest China: Evidences from pyrite morphology and pyrite sulfur isotope, Cold Reg. Sci. Technol. 98, 8–17, DOI: 10.1016/ j.coldregions.2013.10.006.CrossRefGoogle Scholar
  50. Wang, T. (2010), Gas hydrate resource potential and its exploration and development prospect of the Muli coalfield in the northeast Tibetan plateau, Energ. Explor. Exploit. 28, 3, 147–158, DOI: 10.1260/0144-5987.28.3.147.CrossRefGoogle Scholar
  51. Wannamaker, P.E. (1991), Advances in three-dimensional magnetotelluric modeling using integral equations, Geophysics 56, 11, 1716–1728, DOI: 10.1190/ 1.1442984.CrossRefGoogle Scholar
  52. Wannamaker, P.E., J.A. Stodt, and L. Rijo (1987), A stable finite element solution for two-dimensional magnetotelluric modelling, Geophys. J. Int. 88, 1, 277–296, DOI: 10.1111/j.1365-246X.1987.tb01380.x.CrossRefGoogle Scholar
  53. Wu, Q.B., G.L. Jiang, and P. Zhang (2010), Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai–Tibet Plateau, Energ. Conv. Manage. 51, 4, 783–787, DOI: 10.1016/j.enconman.2009.10.035.CrossRefGoogle Scholar
  54. Xiao, K., C.C. Zou, B. Xiang, and J.Q. Liu (2013), Acoustic velocity log numerical simulation and saturation estimation of gas hydrate reservoir in Shenhu area, South China Sea, Sci. World J. 2013, 101459, DOI: 10.1155/2013/ 101459.Google Scholar
  55. Xiong, Z.H., and A.C. Tripp (1997), 3-D electromagnetic modeling for near-surface targets using integral equations, Geophysics 62, 4, 1097–1106, DOI: 10.1190/1.1444210.CrossRefGoogle Scholar
  56. Xu, S.Z. (1994), The Finite Element Method in Geophysics, Science Press, Beijing (in Chinese).Google Scholar
  57. Yamaguchi, S., Y. Ogawa, K. Fujita, N. Ujihara, H. Inokuchi, and N. Oshiman (2010), Audio-frequency magnetotelluric imaging of the Hijima fault, Ya-masaki fault system, southwest Japan, Earth Planets Space 62, 4, 401–411, DOI: 10.5047/eps.2009.12.007.CrossRefGoogle Scholar
  58. Yang, R., P. Yan, N.Y. Wu, Z.B. Sha, and J.Q. Liang (2014), Application of AVO analysis to gas hydrates identification in the northern slope of the South China Sea, Acta Geophys. 62, 4, 802–817, DOI: 10.2478/s11600-013-0193-2.CrossRefGoogle Scholar
  59. Yao, D.W., S.M. Wang, D. Lei, W. Zhu, and G. Wang (2013), Application of CSAMT to Qilian Mountain permafrost region gas hydrate investigation, Chin. J. Eng. Geophys. 10, 2, 132–137 (in Chinese).Google Scholar
  60. Zhao, J.F., T. Yu, Y.C. Song, D. Liu, W.G. Liu, Y. Liu, M.J. Yang, X.K. Ruan, and Y.H. Li (2013), Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai–Tibet Plateau, China, Energy 52, 308–319, DOI: 10.1016/j.energy.2013.01.066.CrossRefGoogle Scholar
  61. Zhu, Y.H., Y.Q. Zhang, H.J. Wen, Z.Q. Lu, Z.Y. Jia, Y.H. Li, Q.H. Li, C.L. Liu, P.K. Wang, and X.W. Guo (2010), Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China, Acta Geol. Sin. (Engl. Ed.) 84, 1, 1–10, DOI: 10.1111/j.1755-6724.2010.00164.x.CrossRefGoogle Scholar

Copyright information

© Xiao et al. 2015

Authors and Affiliations

  • Kun Xiao
    • 1
    • 2
  • Changchun Zou
    • 2
  • Changqing Yu
    • 3
  • Jinyun Pi
    • 3
  1. 1.School of Nuclear Engineering and GeophysicsEast China University of TechnologyNanchangPeople’s Republic of China
  2. 2.School of Geophysics and Information TechnologyChina University of Geosciences (Beijing)BeijingPeople’s Republic of China
  3. 3.Institute of GeologyChinese Academy of Geological SciencesBeijingPeople’s Republic of China

Personalised recommendations