Advertisement

Biologia

, Volume 72, Issue 6, pp 680–685 | Cite as

Chromosomal characteristics of rDNA in a conserved karyotype of two Sternopygus macrurus (Gymnotiformes: Sternopygidae) populations from upper Paraná River basin

  • Carlos Alexandre FernandesEmail author
  • Lucas Baumgärtner
  • Leonardo Marcel Paiz
  • Vladimir Pavan Margarido
  • Ana Luiza de Brito Portela-Castro
Section Zoology

Abstract

Karyotype and chromosomal characteristics of both minor and major rDNA of Sternopygus macrurus, a weakly electric South American fish, from two populations of the upper Paraná River basin, were investigated using conventional (Giemsa staining, silver staining, C-banding and base-specific fluorochromes) and molecular (fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes) cytogenetic techniques. Diploid chromosome number was invariably 2n = 46 and karyotype composed of 23 pairs of biarmed chromosomes (28m+18sm). The nucleolus organizer regions (NORs) were located in the secondary constriction of the p arm of pair No. 2; this site corresponded with CMA3 positive as well as with 18S rDNA signals, respectively. This 18S rDNA cluster was not syntenic to the 5S rDNA sites located at pairs Nos. 1, 5 and 15. The karyotypes and other chromosomal characteristics of individuals from the two populations in the upper Paraná River basin were identical. The karyotype differences among individuals identified as S. macrurus from Paraná River and the S˜ao Francisco and Amazon River basins, respectively, may indicate that these taxa might represent distinct species.

Key words

fish cytogenetics chromosome banding NORs repeitive sequences Neotropical fishes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert J.S. 2003. Family Sternopygidae, pp. 493–497. In: Reis R.E., Kullander S.O. & Ferraris J.C.J. (eds), Checklist of the Freshwater Fish of South and Central America, Edipucrs, Porto Alegre, 742 pp. ISBN: 8574303615, 9788574303611Google Scholar
  2. Albert J.S. & Crampton W.G.R. 2005. Diversity and phylogeny of Neotropical electric fishes (Gymnotiformes), pp. 360–409. DOI:  https://doi.org/10.1007/0-387-28275-013 In: Bullock T.H., Hopkins C.D., Popper A.N. & Fay R.R. (eds), Eletroreception, Springer Handbook of Auditory Research, New York, 472 pp. ISBN: 978-0-387-23192-1
  3. Almeida-Toledo L.F., Foresti F., Daniel M.F.Z. & de Almeida Toledo-Filho S. 1993. Nucleolar chromosome variants in Sternopygus macrurus (Pisces, Sternopygidae) from three Brazilian river basins. Caryologia 46: 53–61. DOI:  https://doi.org/10.1080/00087114.1993.10797246Google Scholar
  4. Almeida-Toledo L.F., Foresti F., Péquignot E.V. & Daniel-Silva M.F. 2001. XX:XY sex chromosome system with X heterochromatinization: an early stage of sex chromosome differentiation in the Neotropic electric eel Eigenmannia virescens. Cytogenet. Cell Genet. 95 (1-2): 73–78. DOI:  https://doi.org/10.1159/000057020PubMedGoogle Scholar
  5. Appels R., Gerlach W.L., Dennis E.S., Swift H. & Peacock W.J. 1980. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals. Chromosoma 78 (3): 293–311. DOI:  https://doi.org/10.1007/BF00327389Google Scholar
  6. Baumgärtner L., Paiz L.M., Margarido V.P. & Portela-Castro A.L.B. 2016. Cytogenetics of the Thorny Catfish Trachydoras paraguayensis (Eigenmann & Ward, 1907), (Siluriformes, Doradidae): Evidence of Pericentric Inversions and Chromosomal Fusion. Cytogenet. Genome Res. 149: 201–206. DOI:  https://doi.org/10.1159/000448126PubMedGoogle Scholar
  7. Bertollo L.A.C., Takahashi C.S. & Moreira-Filho O. 1978. Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erythrinidade). Brazil. J. Genet. 1: 103–120.Google Scholar
  8. Cioffi M.B., Martins C. & Bertollo L.A.C. 2010. Chromosomal spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol. Biol. 10: 271. DOI:  https://doi.org/10.1186/1471-2148-10-271PubMedPubMedCentralGoogle Scholar
  9. Fernandes C.A., Bailly D., Silva V.F.B. & Martins-Santos I.C. 2010. System of multiple sex chromosomes in Eigenmannia trilineata López & Castello, 1966 (Sternopygidae, Gymnotiformes) from Iguatemi River Basin, MS, Brazil. Cytologia 75 (4): 463–466. DOI:  https://doi.org/10.1508/cytologia.75.463Google Scholar
  10. Fernandes C.A., Paiz L.M., Baumgärtner L., Margarido V.P. & Vieira M.M.R. 2017. Comparative cytogenetics of the black ghost knifefish (Gymnotiformes: Apteronotidae): Evidence of chromosomal fusion and pericentric inversions in karyotypes of two Apteronotus species. Zebrafish. DOI:  https://doi.org/10.1089/zeb.2017.1432Google Scholar
  11. Froese R. & Pauly D. (eds). 2017. FishBase. Word Wide Web Eletronic Publication. https://doi.org/www.fishbase.org/ (accessed 22.04.2017).Google Scholar
  12. Griffiths S. 2000. The use of clove oil as an anaesthetic and method for sampling intertidal rockpool fishes. J. Fish Biol. 57 (6): 1453–1464. DOI:  https://doi.org/10.1111/j.1095-8649.2000.tb02224.xGoogle Scholar
  13. Hatanaka T. & Galetti Jr. P.M. 2004. Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae). Genetica 122 (3): 239–244. DOI:  https://doi.org/10.1007/s10709-004-2039-yPubMedGoogle Scholar
  14. Henning F., Trifonov V. & Almeida-Toledo L.F. D. 2008. Use of chromosome microdissection in fish molecular cytogenetics. Genet. Mol. Biol. 31 (1) Suppl.: 279–283. DOI:  https://doi.org/10.1590/S1415-47572008000200022Google Scholar
  15. Howell W.M. & Black D.A. 1980. Controlled silver-staining of nucleolus organizer regions with the protective coloidal developer: a 1-step method. Experientia 36: 1014–1015. DOI:  https://doi.org/10.1007/BF01953855PubMedGoogle Scholar
  16. Kavalco K.F., Pazza R., Bertollo L.A.C. & Moreira-Filho O. 2004. Gene mapping of 5S rDNA sites in eight fish species from the Paraíba do Sul river basin, Brazil. Cytogenet. Genome Res. 106 (1): 107–110. DOI:  https://doi.org/10.1159/000078567PubMedGoogle Scholar
  17. Kress H., Bechler K., Swida U. & Maletz S. 2001. Evolution of 5S rRNA gene families in Drosophila. Chromosom. Res. 9 (5): 403–415. DOI:  https://doi.org/10.1023/A:1016787602583Google Scholar
  18. Jiang N., Bao Z., Zhang X., Eddy S.R. & Wessler S.R. 2004. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431(7008): 569–573. DOI:  https://doi.org/10.1038/nature02953PubMedGoogle Scholar
  19. Lai Z., Nakazato T., Salmaso M., Burke J.M., Tang S., Knapp S.J. & Rieseberg L.H. 2005. Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171 (1): 291–303. DOI:  https://doi.org/10.1534/genetics.105.042242PubMedPubMedCentralGoogle Scholar
  20. Lee S.H., Do G.S. & Seo B.B. 1999. Chromosomal localization of 5S rRNA gene loci and the implications for relationships within the Allium complex. Chromosom. Res. 7 (2): 89–93. DOI:  https://doi.org/10.1023/A:1009222411001Google Scholar
  21. Levan A., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52 (2): 201–220. DOI:  https://doi.org/10.1111/j.1601-5223.1964.tb01953.xGoogle Scholar
  22. Mago-Leccia F. 1978. Los peces de la família Sternopygidae de Venezuela. Acta Científica Venez. 29 (Suppl. 1): 1–91.Google Scholar
  23. Margarido V.P. & Moreira-filho O. 2008. Karyotypic differentiation through chromosome fusion and number reduction in Imparfinis hollandi (Ostariophysi, Heptapteridae). Genet. Mol. Biol. 31 (1) Suppl.: 235–238. DOI:  https://doi.org/10.1590/S1415-47572008000200012Google Scholar
  24. Martins C. & Galetti Jr. P.M. 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res. 7 (5): 363–367. DOI:  https://doi.org/10.1023/A:1009216030316PubMedGoogle Scholar
  25. Monkheang P., Chaveerach A., Sudmoon R. & Tanee T. 2016. Karyotypic features including organizations of the 5S, 45S rDNA loci and telomeres of Scadoxus multiflorus (Amaryllidaceae). Comp. Cytogenet. 10 (4): 637–646. DOI:  https://doi.org/10.3897/CompCytogen.v10i4.9958PubMedPubMedCentralGoogle Scholar
  26. Mukai Y., Endo T.R. & Gill B.S. 1990. Physical mapping of the 5S rRNA multigene family in common wheat. J. Hered. 81 (4): 290–295. DOI:  https://doi.org/10.1093/oxfordjournals.jhered.a110991Google Scholar
  27. Ocalewicz K., Penman D.J. & Babiak I. 2008. Variation in size and location of the Ag-NOR in the Atlantic halibut (Hippoglossus hippoglossus). Genetica 133 (3): 261–267. DOI:  https://doi.org/10.1007/s10709-007-9209-7PubMedGoogle Scholar
  28. Pinkel D., Straume T. & Gray J.W. 1986. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83 (9): 2934–2938.PubMedGoogle Scholar
  29. Piscor D., Ribacinko- Piscor D.B., Fernandes C.A. & Parise-Maltempi P.P. 2013. Cytogenetic analysis in three Bryconamericus species (Characiformes, Characidae): first description of the 5S rDNA-bearing chromosome pairs in the genus. Mol. Cytogenet. 6 (1): 13. DOI:  https://doi.org/10.1186/1755-8166-6-13
  30. Raskina O., Barber J.C., Nevo E. & Belyayev A. 2008. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet. Genome Res. 120 (3-4): 351–357. DOI:  https://doi.org/10.1159/000121084PubMedGoogle Scholar
  31. Schmid M. 1980. Chromosome banding in Amphibia. IV. Differentiation of GC- and AT-rich chromosome region in Anura. Chromosoma 77 (1): 83–103. DOI:  https://doi.org/10.1007/BF00292043PubMedGoogle Scholar
  32. Sene V.F., Pansonato-Alves J.C., Utsunomia R., Oliveira C. & Foresti F. 2014. Karyotype diversity and patterns of chromosomal evolution in Eigenmannia (Teleostei, Gymnotiformes, Sternopygidae). Comp. Cytogenet. 8 (4): 301–311. DOI:  https://doi.org/10.3897/CompCytogen.v8i4.8396PubMedPubMedCentralGoogle Scholar
  33. Silva D.S., Milhomem S.S.R., Pieczarka J.C. & Nagamachi C.Y. 2009. Cytogenetic studies in Eigenmannia virescens (Sternopygidae, Gymnotiformes) and new inferences on the origin of sex chromosomes in the Eigenmannia genus. BMC Genet. 10: 74. DOI:  https://doi.org/10.1186/1471-2156-10-74PubMedPubMedCentralGoogle Scholar
  34. Silva D. dos S., Milhomem S.S.R., de Souza A.C.P., Pieczarka J.C. & Nagamachi C.Y. 2008. A conserved karyotype of Sternopygus macrurus (Sternopygidae, Gymnotiformes) in the Amazon region: differences from other hydrographic basins suggest cryptic speciation. Micron 39 (8): 1251–1254. DOI:  https://doi.org/10.1016/j.micron.2008.04.001Google Scholar
  35. Sumner A.T. 1972. A simple technique for demonstrating centromeric heterochromatin. Explor. Cell Res. 75 (1): 304–306. DOI:  https://doi.org/10.1016/0014-4827(72)90558-7Google Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Carlos Alexandre Fernandes
    • 1
    Email author
  • Lucas Baumgärtner
    • 2
  • Leonardo Marcel Paiz
    • 2
    • 3
  • Vladimir Pavan Margarido
    • 2
    • 3
  • Ana Luiza de Brito Portela-Castro
    • 4
  1. 1.Unidade Universitária de Mundo NovoUniversidade Estadual de Mato Grosso do SulMundo Novo, Mato Grosso do SulBrazil
  2. 2.Centro de Cięencias Biológicas e da SaúdeUniversidade Estadual do Oeste do ParanáCascavel, ParanáBrazil
  3. 3.Centro de Cięencias BiológicasUniversidade Estadual de MaringáMaringá, ParanáBrazil
  4. 4.Departamento de Biotecnologia, Genética e Biologia CelularUniversidade Estadual de MaringáMaringá, ParanáBrazil

Personalised recommendations