Advertisement

Biologia

, Volume 72, Issue 5, pp 527–535 | Cite as

Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake

  • Semra Benzer
  • Recep BenzerEmail author
  • Aysel Çağlan Günal
Section Zoology

Abstract

This study aims to compare the growth estimation of narrow-clawed crayfish (Astacus leptodactylus Eschscholtz, 1823) obtained from two methods which are length-weight relations and Artificial Neural Networks (ANNs) from Hirfanlı Dam Lake in 2013 and 2014. The growth estimation of 325 crayfish was carried out with both methods and the obtained results were compared. Then, the estimated values found via both methods were examined. Correlation coefficient (r), sum square error (SSE), mean absolute percentage error performance criteria (MAPE) were used for comparison of artificial neural network and linear regression models goodness of fit. The results of the current study show that compared to linear regression models, ANNs is a superior estimation tool. Thus, as an outcome of the present study, ANNs can be considered as a more efficient method especially in the growth estimation of the species in biological systems. Another outcome of this study is that crayfish of Hirfanlı Dam Lake well accommodates itself to the ecologic features of the environment and so its growth features are similar to the values of other water systems.

Key words

crayfish length-weight relationship Artificial Neural Networks forecasting Hirfanlı Dam Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atar H.H. & Seçer S. 2003. Width/length-weight relationships of the blue crab (Callinectes sapidus Rathbun 1896) population living in Beymelek Lagoon Lake. Turk. J. Vet. Anim. Sci. 27 (2): 443–447.Google Scholar
  2. Balık S., Ustaoğlu M.R., Sarı H.M. & Berber S. 2005. Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Demirköprü Dam Lake (Manisa). Ege J. Fish. Aquat. Sci. 22 (1-2): 83–89. DOI:  https://doi.org/10.12714/egejfas.2005.22.1.5000156891Google Scholar
  3. Benzer S. & Benzer R. 2016. Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Appl. Ecol. Environ. Res. 14 (2): 543–554. DOI:  https://doi.org/10.15666/aeer/1402_543554CrossRefGoogle Scholar
  4. Benzer S., Benzer R. & Gül A. 2016. Artificial Neural Network applications for biological systems: The case study of Pseudo-rasbora parva. Chapter 5, pp. 49–58. In: Efe R., Matchavariani L., Yaldir A. & Lévai L. (eds), Developments in Science and Engineering, St. Kliment Ohridski University Press, Sofia, 769 pp. ISBN: 978-954-07-4137-6Google Scholar
  5. Benzer S., Karasu Benli Ç. & Benzer R. 2015. The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J. Black Sea Mediter. Environ. 21 (2): 208–223.Google Scholar
  6. Berber S. & Balık S. 2006. Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Manyas Lake (Balı kesir). Ege J. Fish. Aquat. Sci. 23 (1–2): 83–91. DOI:  https://doi.org/10.12714/egejfas.2006.23.1.5000156695Google Scholar
  7. Berber S. & Balık S. 2009. The length-weight relationships, and meat yield of crayfish (Astacus leptodactylus Eschcholtz, 1823) population in Apolyont Lake (Bursa, Turkey). J. Fish. Sci. 3 (2): 86–99. DOI:  https://doi.org/10.3153/jfscom.2009012Google Scholar
  8. Brosse S., Guegan J., Tourenq J. & Lek S. 1999. The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol. Modell. 120 (2-3): 299–311. DOI:  https://doi.org/10.1016/S0304-3800(99)00110-6CrossRefGoogle Scholar
  9. Deniz T.B., Aydın C. & Ates C. 2013. A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. J. Black Sea Mediter. Environ. 19 (2): 190–205.Google Scholar
  10. DSİ. 1968. Limnological survey report of Hirfanli Dam Lake. Ankara, 216 pp.Google Scholar
  11. Ekici B.B. & Aksoy U.T. 1993. Prediction of building energy consumption by using artificial neural networks. Advances in Engineering Software 40 (5): 356–362. DOI:  https://doi.org/10.1016/j.advengsoft.2008.05.003CrossRefGoogle Scholar
  12. Evans J.D. 1996. Straightforward Statistics for the Behavioral Sciences. Pacific Grove, CA: Brooks/Cole Publishing, 600 pp. ISBN: 0534231004, 9780534231002Google Scholar
  13. Füreder L., Oberkofler B., Hanel R., Leiter J. & Thaler B. 2003. The freshwater crayfish Austropotamobius pallipes in South Tyrol: Heritage species and bioindicator. [l’écrevisse Austropotamobius pallipes dans le Tyrol du Sud: espèce patrimoniale et bioindicateur]. Bull. Fr. Pêche Piscic. 370-371: 79–95. DOI:  https://doi.org/10.1051/kmae:2003005CrossRefGoogle Scholar
  14. Gentry T.W., Wiliamowski B.M. & Weatherford L.R. 1995. A comparison of traditional forecasting techniques and neural networks, pp. 765–770. In: Dagli C.H., Akay M., Chen C.L.P., Fernández B.R. & Ghosh J. (eds), Intelligent Engineering Systems Through Artificial Neural Networks Vol. 5, Fuzzy Logic and Evolutionary Programming, American Society of Mechanical Engineers (ASME), 1056 pp. ISBN-10: 0791800482Google Scholar
  15. Gillet C. & Laurent P.J. 1995. Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish 10: 31–36.Google Scholar
  16. Hald A. 1952. Statistical Theory with Engineering Applications. Wiley, New York, 783 pp. ISBN-10: 0471340561Google Scholar
  17. Harlioğlu M.M. 1999. The relationships between length—weight, and meat yield of freshwater crayfish, Astacus leptodactylus Eschscholtz, in the Ağın Region of Keban Dam Lake. Turk. J. Zool. 23 (EK3): 949–958.Google Scholar
  18. Harlioğlu M.M. & Harlioğlu A.G. 2005. Eğirdir, İznik Gölleri ve Hirfanlı Baraj Gölünden Avlanan Tatlı Su İstakozu Astacus leptodactylus (Eschscholtz, 1823)’un Morfometrik Analizleri ile Et Verimlerinin Karşılaştırılması [The comparison of morphometric analysis and meat yield contents of freshwater crayfish, Astacus leptodactylus (Esch 1823) caught from İznik, Eğirdir Lakes and Hirfanlı Dam Lake]. Fırat Üniversitesi Mühendislik Fakültesi Dergisi [Science and Engineering Journal of Fırat University] 17 (2): 412–423.Google Scholar
  19. Haykin S. 1999. Neural Networks: A Comprehensive Foundation, Perenctice Hall, New Jersey, 842 pp. ISBN: 0132733501, 9780132733502Google Scholar
  20. Hopgood A.A. 2000. Intelligent Systems for Engineers and Scientists. 2nd edn. CRC Press, Forida, 488 pp. ISBN: 0-8493-0456-3CrossRefGoogle Scholar
  21. Krenker A., Bešter J. & Kos A. 2011. Introduction to the Artificial Neural Networks, pp. 3–18. DOI:  https://doi.org/10.5772/15751. In: Suzuki K. (ed.), Artificial Neural Networks - Methodological Advances and Biomedical Applications, 362 pp. ISBN: 978-953-307-243-2
  22. Lewis C.D. 1982. Industrial and Business Forecasting Methods. London: Butterworths, 144 pp. DOI:  https://doi.org/10.1002/for.3980020210Google Scholar
  23. Lindqvist O.V. & Lahti E. 1983. On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish 5: 3–11.Google Scholar
  24. Maravelias C.D., Haralabous J. & Papaconstantinou C. 2003. Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar. Ecol. Prog. Ser. 255: 249–258. DOI:  https://doi.org/10.3354/meps255249CrossRefGoogle Scholar
  25. Mastrorillo S., Lek S., Dauba F. & Belaud A. 1997. The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol. 38 (2): 237–246. DOI:  https://doi.org/10.1046/j.1365-2427.1997.00209.xCrossRefGoogle Scholar
  26. Mendes B., Fonseca P. & Campos A. 2004. Weight-length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol. 20 (5): 355–361. DOI:  https://doi.org/10.1111/j.1439-0426.2004.00559.xCrossRefGoogle Scholar
  27. Morato T., Afonso P., Lourinho P., Barreiros J.P., Santos R.S. & Nash R.D.M. 2001. Length—weight relationships for 21 coastal fish species of the Azores, north-eastern Atlantic. Fish. Res. 50 (3): 297–302. DOI:  https://doi.org/10.1016/S0165-7836(00)00215-0CrossRefGoogle Scholar
  28. Obach M., Wagner R., Werner H. & Schmidt H.H. 2001. Modelling population dynamics of aquatic insects with artificial neural networks. Ecol. Modell. 146 (1-3): 207–217. DOI:  https://doi.org/10.1016/S0304-3800(01)00307-6Google Scholar
  29. Panofsky H.A. & Brier G.W. 1968. Some Applications of Statistics to Meteorology. Pennsylvania State University, University Park, 224 pp.Google Scholar
  30. Park Y.S., Verdonschot P.F.M., Chon T.S. & Lek S. 2003. Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res. 37 (8): 1749–1758. DOI:  https://doi.org/10.1016/S0043-1354(02)00557-2CrossRefGoogle Scholar
  31. Primavera J.H., Parado-Estepa F.D. & Lebata J.L. 1998. Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture 164 (1-4): 67–75. DOI:  https://doi.org/10.1016/S0044-8486(98)00177-XCrossRefGoogle Scholar
  32. Rhodes C.P. & Holdich D.M. 1979. On size and sexual dimorphism in Austropotamobius pallipes (Lereboullet) - A step in assessing the commercial exploitation potential of the native British freshwater crayfish. Aquaculture 17 (4): 345–358. DOI:  https://doi.org/10.1016/0044-8486(79)90089-9CrossRefGoogle Scholar
  33. Ricker W.E. 1973. Linear regressions in fishery research. J. Fish. Res. Board Can. 30 (3): 409–434. DOI:  https://doi.org/10.1139/f73-072CrossRefGoogle Scholar
  34. Romaire R.P., Forester J.S. & Avault J.W. 1977. Length-weight relationships of two commercially important crayfishes of the genus Procambarus. Freshwater Crayfish 3: 463–470.Google Scholar
  35. Rumelhart D.E., Hinton G.E. & Williams R.J. 1986. Learning internal representations by error propagation, pp. 318–362. In: Parallel Distributed Processing. Explorations in the Mi-crostructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, USA, 567 pp. ISBN: 0-262-18120-7Google Scholar
  36. Sinovcic G., Franicevic M., Zorica B. & Ciles-Kec V 2004. Length—weight and length—length relationships for 10 pelagic fish species from the Adriatic Sea (Croatia). J. Appl. Ichthyol. 20 (2): 156–158. DOI:  https://doi.org/10.1046/j.1439-0426.2003.00519.xCrossRefGoogle Scholar
  37. Skurdal J. & Qvenild T. 1986. Growth, maturity, and fecundity of Astacus astacus in lake Steinfjorden, S.E. Norway. Freshwater Crayfish 6: 182–186.Google Scholar
  38. Souty-Grosset C, Holdrich D.M., Noel P.Y., Reynolds J.D. & Haffner P. (eds). 2006. Atlas of Crayfish in Europe. Publications Scientifiques du Museum national d’Histoire naturelle, Paris, Patrimoines naturels Vol. 64, 187 pp. ISBN: 978-2-85653-579-0Google Scholar
  39. Sun L., Xiao H., Li S. & Yang D. 2009. Forecasting fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers 4 (11): 1075–1082. DOI:  https://doi.org/10.4304/jcp.4.11.1075-1082CrossRefGoogle Scholar
  40. Suryanarayana I., Braibanti A., Rao R.S., Ramamc V.A., Su-darsan D. & Rao G.N. 2008. Neural networks in fisheries research. Fish Res. 92 (2-3): 115–139. DOI:  https://doi.org/10.1016/j.fishres.2008.01.012CrossRefGoogle Scholar
  41. Tesch F.W. 1971. Age and growth, p. 99–130. In: Ricker W.E. (ed.), Methods for Assessment of Fish Production in Fresh Waters, 2nd edn., Blackwell Scientific Publications, Oxford, 348 pp. ISBN-10: 0632084901Google Scholar
  42. Tosunoğlu Z., Aydın C., Özaydın O. & Leblebici S. 2007. Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana 80 (9): 1087–1094. DOI:  https://doi.org/10.1163/156854007782008649CrossRefGoogle Scholar
  43. Tureli Bilen C., Kokcu P. & Ibrikci T. 2011. Application of artificial neural networks (ANNs) for weight predictions of blue crabs (Callinectes sapidus Rathbun, 1896) using predictor variables. Medit. Mar. Sci. 12 (2): 439–446. DOI:  https://doi.org/10.12681/mms.43CrossRefGoogle Scholar
  44. Witt S.F. & Witt C.A. 1992. Modeling and Forecasting Demand in Tourism. Londra: Academic Press, 195 pp. ISBN: 0-127-60740-4Google Scholar
  45. Yanez E., Plaza F., Gutierrezestrada J.C., Rodriquez N., Barbieri M.A., Pulido-Calvo I. & Borquez C. 2010. Anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance forecast off northern Chile: A multivariate ecosystem neural network approach. Oceanography 87: 242–250. DOI:  https://doi.org/10.1016/j.pocean.2010.09.015Google Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Semra Benzer
    • 1
  • Recep Benzer
    • 2
    Email author
  • Aysel Çağlan Günal
    • 3
  1. 1.Gazi Faculty of EducationGazi UniversityTeknikokullar, AnkaraTurkey
  2. 2.Department of Computer EngineeringNational Defense UniversityAnkaraTurkey
  3. 3.Institute of Natural and Applied SciencesGazi UniversityTeknikokullar, AnkaraTurkey

Personalised recommendations