, Volume 72, Issue 2, pp 130–139 | Cite as

Prospecting soil bacteria from subtropical Brazil for hydrolases production

  • Caroline T. De Oliveira
  • Jamile Q. Pereira
  • Adriano Brandelli
  • Daniel J. DaroitEmail author
Section Cellular and Molecular Biology


Eighteen bacterial strains were isolated from soil of an urban area located in a transition zone between the Atlantic Forest and Pampa biomes, in southern Brazil. These strains were screened for cellulolytic, lipolytic and proteolytic potentials. Eleven isolates (61%) were able to produce cellulolytic enzymes on carboxymethylcellulose (CMC) agar plates, 14 isolates (78%) were proteolytic on skim milk agar plates, and all isolates demonstrated lipolytic/esterolytic potential on tributyrin agar (TBA) plates. From the 18 bacteria, nine (50%) were shown to produce the three investigated enzyme activities. Selected isolates were then evaluated for growth and enzyme production at different conditions of temperature and pH on CMC agar, TBA, and feather meal agar plates. As a general trend, growth and hydrolysis zones were observed at pH 6.0–9.0 and 30–37°C. Sequencing of 16S rRNA gene fragments indicated that 10 isolates belonged to the genus Bacillus, three to Lysinibacillus genus, and the remaining isolates were representatives of Serratia, Phyllobacterium, Paenibacillus, Acinetobacter, and Curtobacterium. The isolate Bacillus sp. CL18 displayed competence for feather degradation when cultured in mineral medium (30°C, pH 7.0) containing a single feather as the only organic substrate. Results from bioprospection indicate the functional versatility of the bacterial isolates, which might be of significance from both ecological and biotechnological perspectives.

Key words

culturable bacteria bioprospecting cellulase lipolytic potential protease 





cetyltrimethylammonium bromide


ethylenediaminetetraacetic acid


feather meal agar


mineral medium


plate count agar


skim milk agar


tributyrin agar


ultra high temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11756_2017_7202130_MOESM1_ESM.pdf (183 kb)
Supplementary material, approximately 228 KB.


  1. Altieri M.A. 1999. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 74: 19–31.CrossRefGoogle Scholar
  2. Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bach E., Cannavan F.S., Duarte F.R.S., Taffarel J.A.S., Tsai S.M. & Brandelli A. 2011. Characterization of feather-degrading bacteria from Brazilian soils. Int. Biodeterior. Biodegrad. 65: 102–107.CrossRefGoogle Scholar
  4. Benson D.A., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2014. GenBank. Nucleic Acids Res 42: D32–D37.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brandelli A., Daroit D.J. & Riffel A. 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735–1750.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bruce T., Martinez I.B., Maia Neto O., Vicente A.C.P., Kruger R.H. & Thompson F.L. 2010. Bacterial community diversity in the Brazilian Atlantic Forest soils. Microb. Ecol. 60: 840–849.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bruce T., Castro A., Kruger R., Thompson C.C. & Thompson F.L. 2012. Microbial diversity of Brazilian biomes, pp. 217–247. In: Nelson K.E. & Jones-Nelson B. (eds), Genomics Applications for the Developing World, Springer, New York.CrossRefGoogle Scholar
  8. Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintrau, M.N. & Zoppini Z. 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem. 58: 216–234.CrossRefGoogle Scholar
  9. Castro R.A., Quecine M.C., Lacava P.T., Batista B.D., Luvizotto D.M., Marcon J., Ferreira A., Melo I.S. & Azevedo J.L. 2014. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. SpringerPlus 3: 382.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chaiharn M. & Lumyong S. 2009. Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J. Microbiol. Biotechnol. 25: 305–314.CrossRefGoogle Scholar
  11. Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A. & Young C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33–41.CrossRefGoogle Scholar
  12. Daroit D.J. & Brandelli A. 2014. A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 34: 372–384.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Egamberdieva D., Kamilova F., Validov S., Gafurova L., Kucharova Z. & Lugtenberg B. 2008. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10: 1–9.PubMedPubMedCentralGoogle Scholar
  14. Ertugrul S., Dönmez G. & Takaç S. 2007. Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. J. Hazard. Mater. 149: 720–724.CrossRefGoogle Scholar
  15. Gagne-Bourgue F., Aliferis K.A., Seguin P., Rani M., Samson R. & Jabaji S. 2012. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J. Appl. Microbiol. 114: 836–853.CrossRefGoogle Scholar
  16. Ghosh A., Maity B., Chakrabarti K. & Chattopadhyay D. 2007. Bacterial diversity of East Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb. Ecol. 54: 452–459.CrossRefGoogle Scholar
  17. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.Google Scholar
  18. Hasan F., Shah A.A. & Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235–251.CrossRefGoogle Scholar
  19. Herranen M., Kariluoto S., Edelmann M., Piironen V., Ahvenniemi K., Iivonen V., Salovaara H. & Korhola M. 2010. Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Int. J. Food Microbiol. 142: 277–285.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kasana R.C., Salwan R., Dhar H., Dutt S. & Gulati A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr. Microbiol. 57: 503–507.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kasana R.C., Salwan R. & Yadav S.K. 2011. Microbial proteases: detection, production, and genetic improvement. Crit. Rev. Microbiol. 37: 262–276.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim D., Baik K.S., Kim M.S., Park S.C., Kim S.S., Rhee M.S. Kwak Y.S. & Seong C.N. 2008. Acinetobacter soli sp. nov., isolated from forest soil. J. Microbiol. 46: 396–401.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kumar G., Kanaujia N. & Bafana A. 2012. Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol. Res. 167: 220–225.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li L., Sinkko H., Montonen L., Wei G., Lindström K. & Räsänen L.A. 2012. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol. Ecol. 79: 46–68.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liang Y.L., Zhang Z., Wu M., Wu U. & Feng J.X. 2014. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res. Int. 2014: 512497.PubMedPubMedCentralGoogle Scholar
  26. Lin L., Kan X., Yan H. & Wang D. 2012. Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electron. J. Biotechnol. 15: DOI:
  27. Lo Y.C., Lu W.C., Chen C.Y., Chen W.M. & Chang J.S. 2010. Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Biochem. Eng. J. 53: 77–84.CrossRefGoogle Scholar
  28. Lupatini M., Suleiman A.K.A., Jacques R.J.S., Antoniolli Z.I., Kuramae E.E., Camargo F.A.O. & Roesch L.F.W. 2013. Soilborne bacterial structure and diversity does not reflect community activity in Pampa biome. PLoS One 8: e76465.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lyngwi N.A., Koijam K., Sharma D. & Joshi S.R. 2013. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Rev. Biol. Trop. 61: 467–490.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Maki M., Leung K.T. & Qin W. 2009. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5: 500–516.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mazzucotelli C.A., Ponce A.G., Kotlar C.E. & Moreira M.R. 2013. Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustrial by-products and waste. Food Sci. Technol. 33: 295–303.CrossRefGoogle Scholar
  32. Overbeck G.E., Müller S.C., Fidelis A., Pfadenhauer J., Pillar V.D., Blanco C.C., Boldrini I.I., Both R. & Forneck E.D. 2007. Brazil’s neglected biome: the South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 9: 101–116.CrossRefGoogle Scholar
  33. Pajni S., Dhillon N., Vadehra D.V. & Sharma P. 1989. Carboxymethyl cellulase, β-glucosidase and xylanase production by Bacillus isolates from soil. Int. Biodeterior. 25: 1–5.CrossRefGoogle Scholar
  34. Pandey S., Singh S., Yadav A.N., Nain L. & Saxena A.K. 2013. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci. Biotechnol. Biochem. 77: 1474–1480.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Qian C.D., Liu T.Z., Zhou S.L., Ding R., Zhao W.P., Li O. & Wu X.C. 2012. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii. BMC Microbiol. 12: 197.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rieger T.J., Oliveira C.T., Pereira J.Q., Brandelli A. & Daroit D.J. 2017. Proteolytic system of Bacillus sp. CL18 capable of extensive feather degradation and hydrolysis of diverse protein substrates. Br. Poult. Sci. DOI: Scholar
  37. Robledo M., Jiménez-Zurdo J.I., Velázquez E., Trujillo M.E., Zurdo-Pi´neiro J.L., Ramírez-Bahena M.H., Ramos B., Díaz-Mínguez J.M., Dazzo F., Martínez-Molina E. & Mateos P.F. 2008. Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc. Natl. Acad. Sci. USA 105: 7064–7069.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rogers S.O. & Bendich A.J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69–76.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sanchez S. & Demain A.L. 2011. Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org. Process Res. Dev. 15: 224–230.CrossRefGoogle Scholar
  40. Sgroy V., Cassán F., Masciarelli O., Del Papa M.F., Lagares A. & Luna V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 85: 371–381.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shil R.K., Mojumder S., Sadida F.F., Uddin M. & Sikdar D. 2014. Isolation and identification of cellulolytic bacteria from the gut of three phytophagus insect species. Braz. Arch. Biol. Technol. 57: 927–932.CrossRefGoogle Scholar
  42. Souza A.R.C., Baldoni D.B., Lima J., Porto V., Marcuz C., Machado C., Ferraz R.C., Kuhn R.C., Jacques R.J.S., Guedes J.V.C. & Mazutti M.A. 2017. Selection, isolation, and identification of fungi for bioherbicide production. Braz. J. Microbiol. 48: 101–108.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sun Y. & Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tallur P.N., Sajjan D.B., Mulla S.I., Talwar M.P., Pragasam A., Nayak V.M., Ninnekar H.Z. & Bhatet S.S. 2016. Characterization of antibiotic resistant and enzyme producing bacterial strains isolated from the Arabian Sea. 3 Biotech 6: 28.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tang W.L. & Zhao H. 2009. Industrial biotechnology: tools and applications. Biotechnol. J. 4: 1725–1739.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 15: 4876–4882.CrossRefGoogle Scholar
  47. Vaz-Moreira I., Figueira V., Lopes A.R., Pukall R., Spröer C., Schumann P., Nunes O.C. & Manaia C.M. 2010. Paenibacillus residui sp. nov., isolated from urban waste compost. Int. J. Syst. Evol. Microbiol. 60: 2415–2419.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Vilain S., Luo Y., Hildreth M.B. & Brözel V.S. 2006. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl. Environ. Microbiol. 72: 4970–4977.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xu S.J. & Kim B.S. 2014. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology 42: 158–166.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yadav S., Kaushik R., Saxena A.K. & Arora DK. 2011. Genetic and functional diversity of Bacillus strains in the soils longterm irrigated with paper and pulp mill effluent. J. Gen. Appl. Microbiol. 57: 183–195.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yadav A.N., Sachan S.G., Verma P., Kaushik R. & Saxena A.K. 2015. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J. Basic Microbiol. 55: 1–14.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Caroline T. De Oliveira
    • 1
  • Jamile Q. Pereira
    • 2
  • Adriano Brandelli
    • 1
  • Daniel J. Daroit
    • 1
    Email author
  1. 1.Laboratório de MicrobiologiaUniversidade Federal da Fronteira Sul (UFFS)Cerro LargoBrazil
  2. 2.Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Cięncia e Tecnologia de Alimentos (ICTA)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations