, Volume 72, Issue 2, pp 238–244 | Cite as

Low density lipoprotein increases amyloid precursor protein processing to amyloidogenic pathway in differentiated SH-SY5Y cells

  • Panit Yamchuen
  • Rattima Jeenapongsa
  • Sutisa Nudmamud-Thanoi
  • Nanteetip LimpeanchobEmail author
Section Cellular and Molecular Biology


Hypercholesterolemia has been considered as a risk factor for Alzheimer’s disease (AD). In addition to low density lipoprotein (LDL), oxidized LDL plays some roles in AD pathology. Neurodegenerative effect of oxidized LDL was supported by the increased oxidative stress in neurons. To further investigate the role of oxidized LDL, the present study aimed to test its effect on amyloid precursor protein (APP) processing. The release of soluble APP (sAPP) was evaluated in differentiated SH-SY5Y neuroblastoma cells exposed to native (non-oxidized) or oxidized human LDL including mildly and fully oxidized LDL (mox- and fox-LDL). Non-amyloidogenic and amyloidogenic pathways were investigated using specific antibody against sAPPα and sAPPβ. The results demonstrate that oxidized LDL induced neuronal death in dose-dependent patterns. Mox-LDL mediated caspase-3 dependent apoptosis, whereas fox-LDL notably damaged cell membrane. At subtoxic concentration, only native but not oxidized LDL induced the release of sAPP dominantly in amyloidogenic pathway with no change in β-secretase activity. These results suggest that LDL and oxidized LDL play critical roles in AD pathogenesis via different pathways. Elevated serum LDL level together with high oxidative stress may aggravate the progression of AD.

Key words

Alzheimer’s disease low density lipoprotein oxidized LDL amyloid precursor protein β-secretase 



Alzheimer’s disease


A disintegrin and metalloproteinases


amyloid precursor protein


amyloid beta


β-site APP cleaving enzyme 1


blood-brain barrier


ethylenediaminetetraacetic acid


foetal bovine serum


fully oxidized-low density lipoprotein


mildly oxidized-low density lipoprotein


soluble amyloid precursor protein alpha


soluble amyloid precursor protein beta


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bereczki E., Bernat G., Csont T., Ferdinandy P., Scheich H. & Santha M. 2008. Overexpression of human apolipoprotein B-100 induces severe neurodegeneration in transgenic mice. J. Proteome Res. 7: 2246–2252.CrossRefGoogle Scholar
  2. Bjelik A., Bereczki E., Gonda S., Juhasz A., Rimanoczy A., Zana M., Csont T., Pakaski M., Boda K., Ferdinandy P., Dux L., Janka Z., Santha M. & Kalman J. 2006. Human apoB overexpression and a high-cholesterol diet differently modify the brain APP metabolism in the transgenic mouse model of atherosclerosis. Neurochem. Int. 49: 393–400.CrossRefGoogle Scholar
  3. Chasseigneaux S. & Allinquant B. 2012. Functions of Aβ, sAPPα and sAPPβ: similarities and differences. J. Neurochem. 120 (Suppl. 1): 99–108.CrossRefGoogle Scholar
  4. Chen X., Hui L. & Geiger J.D. 2014. Role of LDL cholesterol and endolysosomes in amyloidogenesis and Alzheimer’s disease. J. Neurol. Neurophysiol. 5: 236.CrossRefGoogle Scholar
  5. Chen X., Wagener J.F., Morgan D.H., Hui L., Ghribi O. & Geiger J.D. 2010. Endolysosome mechanisms associated with Alzheimer’s disease-like pathology in rabbits ingesting cholesterol-enriched diet. J. Alzheimers Dis. 22: 1289–1303.CrossRefGoogle Scholar
  6. Dias I.H., Mistry J., Fell S., Reis A., Spickett C.M., Polidori M.C., Lip G.Y. & Griffiths H.R. 2014. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation. Free Radic. Biol. Med. 75: 48–59.CrossRefGoogle Scholar
  7. Gamba P., Testa G., Gargiulo S., Staurenghi E., Poli G. & Leonarduzzi G. 2015. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front. Aging Neurosci. 7: 119.CrossRefGoogle Scholar
  8. Ghribi O., Larsen B., Schrag M. & Herman M.M. 2006. High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp. Neurol. 200: 460–467.CrossRefGoogle Scholar
  9. Hui L., Chen X. & Geiger J.D. 2012. Endolysosome involvement in LDL cholesterol-induced Alzheimer’s disease-like pathology in primary cultured neurons. Life Sci. 91: 1159–1168.CrossRefGoogle Scholar
  10. Imtiaz B., Tolppanen A.M., Kivipelto M. & Soininen H. 2014. Future directions in Alzheimer’s disease from risk factors to prevention. Biochem. Pharmacol. 88: 661–670.CrossRefGoogle Scholar
  11. Kankaanpaa J., Turunen S.P., Moilanen V., Horkko S. & Remes A.M. 2009. Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimer’s disease. Neurobiol. Dis. 33: 467–472.CrossRefGoogle Scholar
  12. Keller J.N., Hanni K.B. & Markesbery W.R. 1999. Oxidized lowdensity lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J. Neurochem. 72: 2601–2609.CrossRefGoogle Scholar
  13. Koyama A., Stone K. & Yaffe K. 2013. Serum oxidized lowdensity lipoprotein level and risk of cognitive impairment in older women. Neurobiol. Aging 34: 634–635.e2.CrossRefGoogle Scholar
  14. Lichtenthaler S.F. 2011. α-Secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. J. Neurochem. 116: 10–21.CrossRefGoogle Scholar
  15. Marques F., Sousa J.C., Sousa N. & Palha J.A. 2013. Bloodbrain-barriers in aging and in Alzheimer’s disease. Mol. Neurodegener. 8: 38.CrossRefGoogle Scholar
  16. Marwarha G. & Ghribi O. 2015. Does the oxysterol 27-hydroxycholesterol underlie Alzheimer’s disease–Parkinson’s disease overlap? Exp. Gerontol. 68: 13–18.CrossRefGoogle Scholar
  17. Matsuura E., Hughes G.R.V. & Khamashta M.A. 2008. Oxidation of LDL and its clinical implication. Autoimmun. Rev. 7: 558–566.CrossRefGoogle Scholar
  18. Maulik M., Westaway D., Jhamandas J.H. & Kar S. 2013. Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol. Neurobiol. 47: 37–63.CrossRefGoogle Scholar
  19. Multhaup G., Huber O., Buee L. & Galas M.C. 2015. Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Aβ42, and tau in nuclear roles. J. Biol. Chem. 290: 23515–23522.CrossRefGoogle Scholar
  20. Namba Y., Tsuchiya H. & Ikeda K. 1992. Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer’s disease. Neurosci. Lett. 134: 264–266.CrossRefGoogle Scholar
  21. Nowicki M., Muller K., Serke H., Kosacka J., Vilser C., Ricken A. & Spanel-Borowski K. 2010a. Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root ganglion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4. J. Neurosci. Res. 88: 403–412.CrossRefGoogle Scholar
  22. Nowicki M., Serke H., Kosacka J., Muller K. & Spanel-Borowski K. 2010b. Oxidized low-density lipoprotein (oxLDL) induces cell death in neuroblastoma and survival autophagy in schwannoma cells. Exp. Mol. Pathol. 89: 276–283.CrossRefGoogle Scholar
  23. Pfrieger F.W. & Ungerer N. 2011. Cholesterol metabolism in neurons and astrocytes. Prog. Lipid Res. 50: 357–371.CrossRefGoogle Scholar
  24. Poli G., Biasi F. & Leonarduzzi G. 2013. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 1: 125–130.CrossRefGoogle Scholar
  25. Reitz C. 2013. Dyslipidemia and the risk of Alzheimer’s disease. Curr. Atheroscler. Rep. 15: 307.CrossRefGoogle Scholar
  26. Xiong H., Callaghan D., Jones A., Walker D.G., Lue L.F., Beach T.G., Sue L.I., Woulfe J., Xu H., Stanimirovic D.B. & Zhang W. 2008. Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production. Neurobiol. Dis. 29: 422–437.CrossRefGoogle Scholar
  27. Yamchuen P., Aimjongjun S. & Limpeanchob N. 2014. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production. Neurochem. Int. 78: 1–6.CrossRefGoogle Scholar
  28. Zhao Z., Zhou H., Peng Y., Qiu C.H., Sun Q.Y., Wang F. & Xie H.N. 2014. Expression and significance of plasma 3-NT and ox-LDL in patients with Alzheimer’s disease. Genet. Mol. Res. 13: 8428–8435.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Panit Yamchuen
    • 1
  • Rattima Jeenapongsa
    • 1
  • Sutisa Nudmamud-Thanoi
    • 2
  • Nanteetip Limpeanchob
    • 1
    Email author
  1. 1.Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
  2. 2.Department of Anatomy and Centre of Excellence in Medical Biotechnology, Faculty of Medical ScienceNaresuan UniversityPhitsanulokThailand

Personalised recommendations