Advertisement

Biologia

, Volume 72, Issue 2, pp 194–203 | Cite as

A crossover design to assess feeding preferences in terrestrial isopods: A case study in a Mediterranean species

  • Giuseppe MontesantoEmail author
  • Sofia Cividini
Section Zoology

Abstract

A crossover design was used to study food preferences and capability of nutritional acclimation to different food sources in terrestrial isopods, which live in xeric environments, by using Armadillo officinalis as an experimental model. The foods chosen for this experiment were three fresh foods with different content of water (potato, carrot, lettuce), and a dry food (leaf of plane tree). In order to quantify these preferences, two kinds of data able to provide complementary information were collected: number of droppings produced and food ingested per week. These data were used to fit some mixed effects models, in order to highlight statistically significant differences among the foods provided to the animals at a level of preferences. In addition, the buccal appendages of A. officinalis were observed and drawn in details, to provide further information at this level. Our results showed that A. officinalis seems not to have particular preferences between fresh foods with a moderate quantity of water and dry food, commonly eaten in its natural habitat. In contrast, foods with high quantity of water, like the lettuce, seem not to be instead particularly palatable for its taste, or its nutritional needs. Also, this study seems to have highlighted a better capability of digestion and absorption of the potato tuber compared to the leaf of plane tree for an equal quantity of ingested food. Anyway, this hypothesis needs further insights in order to be able to be verified.

Key words

Armadillo officinalis biostatistics behaviour breeding woodlice diet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd El-Wakeil K.F. 2009. Trophic structure of macro- and mesoinvertebrates in Japanese coniferous forest: carbon and nitrogen stable isotopes analyses. Biochem. Syst. Ecol. 37 (4): 317–324. DOI:  https://doi.org/10.1016/j.bse.2009.05.008CrossRefGoogle Scholar
  2. Abd El-Wakeil K.F. 2011. The feeding habits of two terrestrial isopod species using carbon and nitrogen isotope ratios. J. Egypt. Ger. Soc. Zool. 63 D (Invertebrates and Parasitology): 1–11.Google Scholar
  3. Abd El-Wakeil K.F. 2015. Effects of terrestrial isopods (Crustacea: Oniscidea) on leaf litter decompositions processes. J. Basic Appl. Zool. 69: 10–16. DOI:  https://doi.org/10.1016/j.jobaz.2015.05.002.CrossRefGoogle Scholar
  4. Ábrahám A. & Wolsky A. 1930. Über ein neues Sinnesorgan del Landisopoden. Zool. Anz. 87: 87–93.Google Scholar
  5. Agodi A., Oliveri Conti G., Barchitta M., Quattrocchi A., Lombardo B.M., Montesanto G., Messina G., Fiore M. & Ferrante M. 2015. Validation of Armadillo officinalis Dumčril, 1816 (Crustacea, Isopoda, Oniscidea) as a bioindicator: In vivo study of air benzene exposure. Ecotoxicol. Environ. Saf. 114: 171–178. DOI:  https://doi.org/10.1016/j.ecoenv.2015.01.011CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carefoot T.H. 1973. Feeding, food preference, and the uptake of food energy by the supralittoral isopod Ligia pallasii. Mar. Biol. 18 (3): 228–236. DOI:  https://doi.org/10.1007/BF00367989CrossRefGoogle Scholar
  7. Dias N. & Hassall M. 2005. Food, feeding and growth rates of peracarid macro-decomposers in a Ria Formosa salt marsh, southern Portugal. J. Exp. Mar. Biol. Ecol. 325 (1): 84–94. DOI:  https://doi.org/10.1016/j.jembe.2005.04.017CrossRefGoogle Scholar
  8. Drobne D. 1995. Bacteria adherent to the hindgut of terrestrial isopods. Acta Microbiol. Immunol. Hung. 42 (1): 45–52. PMID: 7620812PubMedPubMedCentralGoogle Scholar
  9. Duméril A. 1816. Armadille. In: Dictionnaire des Sciences naturelles, Strasbourg 3: 115–117. DOI:  https://doi.org/10.5962/bhl.title.42219Google Scholar
  10. Greenway P. 1985. Calcium balance and moulting in the Crustacea. Biol. Rev. 60 (3): 425–454. DOI:  https://doi.org/10.1111/j.1469-185X.1985.tb00424.xCrossRefGoogle Scholar
  11. Gupta M. 1962. Contact chemoreception in Oniscus asellus and Porcellio scaber. J. Zool. Soc. India 14: 145–149.Google Scholar
  12. Hames C.A.C. & Hopkin S.P. 1989. The structure and function of the digestive system of terrestrial isopods. J. Zool. 217 (4): 599–627. DOI:  https://doi.org/10.1111/j.1469-7998.1989.tb02513.xCrossRefGoogle Scholar
  13. Hassall M. & Rushton S.P. 1982. The role of coprophagy in the feeding strategies of terrestrial isopods. Oecologia 53 (3): 374–381. DOI:  https://doi.org/10.1007/BF00389017CrossRefPubMedPubMedCentralGoogle Scholar
  14. Henke G. 1960. Sinnesphysiologische Untersuchungen bei Landisopoden, insbesondere bei Porcellio scaber. Verh. Dtsch. Zool. Ges. 1960/54: 167–170.Google Scholar
  15. Hoese B. & Schneider P. 1990. Bewegungen der 2. Antennen einiger Landasseln (Oniscidea) beim Suchlauf. Zool. Anz. 225: 1–19.Google Scholar
  16. Hryniewiecka-Szyfter Z. & Storc V. 1986. The influence of starvation and different diets on the hindgut of Isopoda (Mesitodea entomon, Oniscus asellus, Porcellio scaber). Protoplasma 134 (1): 53–59. DOI:  https://doi.org/10.1007/BF01276375CrossRefGoogle Scholar
  17. Jones B. & Kenward M.G. 2014. Design and Analysis of Crossover Trials. Monographs on Statistics and Applied Probability (Third Edition). CRC Press, Taylor & Francis Group, Boca Raton, 438 pp. ISBN: 9781439861424Google Scholar
  18. Kobert R. 1903. Ueber einige Enzyme wirbelloser Thiere. Pflugers Arch. Gesamte Physiol. Menschen Tiere 99(3): 116–186. DOI:  https://doi.org/10.1007/BF01663098CrossRefGoogle Scholar
  19. Leather S.R. 1994. Life history traits of insect herbivores in relation to host quality, pp. 175–207. In: Bernays E.A. (ed.), Insect-Plant Interactions V, CRC Press, Taylor & Francis Group, Boca Raton, 240 pp. ISBN-10: 0849341256Google Scholar
  20. Gabouriaut D. & Corbičre-Tichané G. 1976. Structure de l’organe sensoriel apical de l’antenne chez l’isopode terrestre Metoponorthus sexfasctiatus Budde-Lund (Crustacea, Isopoda). Zoomorphologia 83 (3): 253–269. DOI:  https://doi.org/10.1007/BF00993512CrossRefGoogle Scholar
  21. Messina G., Montesanto G., Pezzino E., Caruso D. & Lombardo B.M. 2011. Diversity of terrestrial isopods in a protected area characterized by salty coastal ponds (Vendicari, Sicily). J. Nat. Hist. 45 (35-36): 2145–2158. DOI:  https://doi.org/10.1080/00222933.2011.587899CrossRefGoogle Scholar
  22. Messina G., Montesanto G., Pezzino E., Sciandrello S., Caruso D. & Lombardo B.M. 2014. Plant communities preferences of terrestrial crustaceans (Isopoda: Oniscidea) in a protected coastal area of southeastern Sicily (Italy). Biologia 69 (3): 354–362. DOI:  https://doi.org/10.2478/s11756-013-0321-0CrossRefGoogle Scholar
  23. Messina G., Pezzino E., Montesanto G., Caruso D. & Lombardo B.M. 2012. The diversity of terrestrial isopods in the natural reserve “Saline di Trapani e Paceco” (Crustacea, Isopoda, Oniscidea) in northwestern Sicily. Zookeys 176: 215–230. DOI:  https://doi.org/10.3897/zookeys.176.2367CrossRefGoogle Scholar
  24. Montesanto G. 2015. A fast GNU method to draw accurate scientific illustrations for taxonomy. Zookeys 515: 191–206. DOI:  https://doi.org/10.3897/zookeys.515.9459CrossRefGoogle Scholar
  25. Montesanto G. 2016. Drawing setae: a GNU way for digital scientific illustrations. Nauplius 24: e2016017. DOI:  https://doi.org/10.1590/2358-2936e2016017
  26. Nair G.A. & Fadiel M.M. 1991. The feeding and conversion of leaf litter by the pillbug Armadillo officinalis (Isopoda, Oniscidea). Arid. Soil. Res. Rehab. 5 (3): 167–174. DOI:  https://doi.org/10.1080/15324989109381277Google Scholar
  27. Nair G.A., Fadiel M.M. & Mohamed A.I. 1989. Effects of temperature on transpiration, behaviour, growth and feeding habits of Armadillo officinalis (Isopoda, Oniscidea) in Benghazi, Libya. J. Arid. Environ. 17: 49–55.CrossRefGoogle Scholar
  28. Nair G.A., Chowdhury K., Haeba M.H., El-Azirg El-Ammari N. & Abusneina A.M. 2003. Body mass, feeding and food conversion of Armadillo officinalis Dumeril and Porcellio scaber Latreille (Isopoda, Oniscidea) fed on the dry leaves of Citrus limonia or Punica granatum. Asian. J. Microbiol. Biotechnol. Environ. Sci. 5 (2): 145–150.Google Scholar
  29. Piantadosi S. 2005. Crossover designs, Chapter 20, pp. 515–527. DOI:  https://doi.org/10.1002/0471740136.ch20. In: Piantadosi S., Balding D.J., Cressie N.A.C., Fisher N.I., Johnstone I.M., Kadane J.B., Molenberghs G., Ryan L.M., Scott D.W., Smith A.F.M. & Teugels J.L. (eds), Clinical Trials. A Methodologic Perspective, 2nd ed., John Wiley and Sons, Inc., Hoboken, NJ, 720 pp. ISBN: 978-0-471-72781-1CrossRefGoogle Scholar
  30. Rasband W.S. 1997. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://doi.org/imagej.nih.gov/ij/ (accessed 14.02.2017)Google Scholar
  31. Schmalfuss H. 1996. The terrestrial isopod genus Armadillo in western Asia (Oniscidea: Armadillidae) with descriptions of five new species. Stuttgarter Beitr. Naturk. Ser. A. 544, 43 pp.Google Scholar
  32. Schmalfuss H. 2003. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beitr. Natur. Ser. A. 654, 341 pp.Google Scholar
  33. Seelinger G. 1977. Der Antennenendzapfen der tunesischen Wüstenassel Hemilepistus reaumuri, ein komplexes Sinnesorgan (Crustacea, Isopoda). J. Comp. Physiol. A. 113 (1): 95–103. DOI:  https://doi.org/10.1007/BF00610455CrossRefGoogle Scholar
  34. Steel C.G.H. 1993. Storage and translocation of integumentary calcium during the moult cycle of the terrestrial isopod Oniscus asellus (L.). Can. J. Zool. 71 (1): 4–10. DOI:  https://doi.org/10.1139/z93-002CrossRefGoogle Scholar
  35. Tuf I.H., Drábková L. & Šipoš J. 2015. Personality affects defensive behaviour of Porcellio scaber (Isopoda, Oniscidea). Zookeys 515: 159–171. DOI:  https://doi.org/10.3897/zookeys.515.9429CrossRefGoogle Scholar
  36. Udovic M., Drobne D. & Lestan D. 2009. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil. Environ. Pollut. 157 (10): 2822–2829. DOI:  https://doi.org/10.1016/j.envpol.2009.04.023CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ullrich B., Storch V. & Schairer H. 1991. Bacteria on the food, in the intestine and on the faeces of the woodlouse Oniscus asellus (Crustacea, Isopoda). Pedobiologia 35: 41–51.Google Scholar
  38. Vandel A. 1962. Isopodes terrestres (deuxičme partie), pp. 417–931. Faune de France, Lechevalier, Paris 66, 931 pp. ISBN-10: 3618945337Google Scholar
  39. Warburg M.R. 1993. Evolutionary Biology of Land Isopods. Springer, Berlin, 161 pp. DOI:  https://doi.org/10.1007/978-3-662-21889-1. ISBN: 978-3-662-21891-4CrossRefGoogle Scholar
  40. Warburg M.R. 2013. Post-parturial reproduction in terrestrial isopods: a partial review. Invertebr. Reprod. Dev. 57 (1): 10–26. DOI:  https://doi.org/10.1080/07924259.2011.633620Google Scholar
  41. Warburg M.R. & Bercovitz K. 1978a. Hygroreaction of normal and dessicated Armadillo officinalis isopods. Entomol. Exp. Appl. 24 (1): 55–64. DOI:  https://doi.org/10.1111/j.1570-7458.1978.tb02756.xCrossRefGoogle Scholar
  42. Warburg M.R. & Bercovitz K. 1978b. Thermal effects on photoreaction of the oak-woodland pillbug Armadillo officinalis at different temperatures. J. Therm. Biol. 3 (2): 75–78. DOI:  https://doi.org/10.1016/0306-4565(78)90041-4CrossRefGoogle Scholar
  43. Warburg M.R., Rankevich D. & Chasanmus K. 1978. Isopod species diversity and community structure in mesic and xeric habitats of the Mediterranean region. J. Arid. Environ. 1: 157–163.CrossRefGoogle Scholar
  44. Woods J.R., Williams J.G. & Tavel M. 1989. The two-period crossover design in medical research. Ann. Intern. Med. 110 (7): 560–566. DOI:  https://doi.org/10.7326/0003-4819-110-7-560CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zimmer M. 2002. Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol. Rev. 77: 455–493. DOI:  https://doi.org/10.1017/S1464793102005912CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zimmer M., Kautz G. & Topp W. 1996. Olfaction in terrestrial isopods (Isopoda: Oniscidea): responses of Porcellio scaber to the odour of litter. Eur. J. Soil. Biol. 32 (3): 141–147.Google Scholar
  47. Zimmer M., Pennings S.C., Buck T.L. & Carefoot T.H. 2002. Species-specific patterns of litter processing by terrestrial isopods (Isopoda: Oniscidea) in high intertidal salt marshes and coastal forests. Funct. Ecol. 16 (5): 596–607. DOI:  https://doi.org/10.1046/j.1365-2435.2002.00669.xCrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Dipartimento di BiologiaUniversità degli Studi di PisaPisaItaly
  2. 2.Independent Researcher in BiostatisticsComoItaly

Personalised recommendations