Advertisement

Biologia

, Volume 72, Issue 2, pp 113–129 | Cite as

Allelopathy: An overview from micro- to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world

  • Marcelo Pedrosa Gomes
  • Queila Souza Garcia
  • Leilane Carvalho Barreto
  • Lúcia Pinheiro Santos Pimenta
  • Miele Tallon Matheus
  • Cleber Cunha FigueredoEmail author
Review Section Botany

Abstract

Allelopathy is an important ecological phenomenon influencing ecosystem dynamics. Currently, it has gained attention due to the potential applications of allelochemicals in agriculture. Allelopathic interactions have been reported in ecological relationships between plants and microorganisms, and between species of each group. These studies have been relatively descriptive, however, without interconnected views of how these molecules can affect cell biology and how they are integrated into environmental interactions. The present review provides an overview of the history, physiology, and ecological effects of allelopathy, with special focus on its occurrence between macro- and microorganisms and its ecological roles in terrestrial and aquatic environments. We have attempted to examine the interconnections between terrestrial and aquatic systems in relation to the production, dynamics, and ecological effects of allelochemicals and to discuss the possible effects of climate changes on allelopathic interactions.

Key words

allelochemicals ecology environmental connection interactions plant physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abenavoli M.R., Sorgonà A., Sidari M., Badiani M. & Fuggi A. 2003. Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. J. Plant Physiol. 160: 227–238.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abrahim D., Braguini W.L., Kelmer-Bracht A.M. & Ishii-Iwamoto E.L. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 26: 611–624.CrossRefGoogle Scholar
  3. Achatz M., Morris E.K., Müller F., Hilker M. & Rillig M.C. 2014. Soil hypha-mediated movement of allelochemicals: Arbuscular mycorrhizae extend the bioactive zone of juglone. Funct. Ecol. 28: 1020–1029.CrossRefGoogle Scholar
  4. Alfredo A.G. & Aquila M.E.A. 2000. Alellopathy: An emerging topic in Ecophysiology. Rev. Bras. Fisiol. Veg. 12: 175–204.Google Scholar
  5. Aliotta G., Cafiero G. & Otero A.M. 2006. Weed germination, seedling growth and their lesson for allelopathy in agriculture, pp. 285–297. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implicans. Springer, Dordrecht.CrossRefGoogle Scholar
  6. Arzul G., Seguel M., Guzman L. & Denn E.E. 1999. Comparison of allelopathic properties in 3 toxic Alexandrium species. J. Exp. Bot. 232: 285–295.Google Scholar
  7. Bais H.P., Vepachedu R., Gilroy S., Callaway R.M. & Vivanco J.M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301: 1377–1380.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barazani O. & Friedman J. 1999. Allelopathic bacteria and their impact on higher plants. Crit. Rev. Microbiol. 27: 741–755.Google Scholar
  9. Barto E.K., Weidenhamer J.D., Cipollini D. & Rillig M.C. 2012. Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends Plant Sci. 17: 633–637.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Batish D.R., Singh H.P., Setia N., Kaur S. & Kohli R.K. 2006. 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol. Biochem. 44: 819–827.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bentley R. 1999. Secondary metabolite biosynthesis: The first century. Crit. Rev. Biotechnol. 19: 1–40.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bertin C., Yang X. & Weston L. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256: 67–83.CrossRefGoogle Scholar
  13. Blair A., Weston L., Nissen S., Brunk G. & Hufbauer R., 2009. The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol. Invasions 11: 325–332.CrossRefGoogle Scholar
  14. Blair A.C., Nissen S.J., Brunk G.R. & Hufbauer R.A. 2006. A lack of evidence for an ecological role of the putative allelochemical (+/–)-catechin inspotted knapweed invasion success. J. Chem. Ecol. 32: 2327–2331.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Blanco J.A. 2007. The representation of allelopathy in ecosystem level forest models. Ecol. Modell. 209: 65–77.CrossRefGoogle Scholar
  16. Blum U. 2003. Fate of phenolic allelochemicals in soils: The role of soil and rhizosphere microorganisms, pp. 55–72. In: Galindo J.C.G., Macias F.A., Molinillo J.M.G. & Cutler H. (eds), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton.Google Scholar
  17. Bouhaouel I., Gfeller A., Fauconnier M.L., Rezgui S., Amara H.S. & Jardin P. 2014. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl 60: 425–436.CrossRefGoogle Scholar
  18. Braz Filho R. 2010. Phytochemical contribution to development of a emergent country. Quim. Nova 33: 229–239.CrossRefGoogle Scholar
  19. Burgos N.R., Talbert R.E., Kim K.S. & Kuk Y.I. 2004. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J. Chem. Ecol. 30: 671–689.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Caldwell M.M., Ballaré C.L., Bornman J.F., Flint S.D., Bjorn L.O., Teramura A.H., Kulandaivelu G. & Tevini M. 2003. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2: 252–266.CrossRefGoogle Scholar
  21. Carmichael W.W. 1994. The toxins of Cyanobacteria. Sci. Am. 270. 78–86.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Céspedes C.L., Avila J.G., Martínez A., Serrato B., Calderón-Mugica J.C. & Salgado-Garciglia R. 2006. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J. Agric. Food Chem. 54: 3521–3527.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chou C. 2006. Introduction to allelopathy, pp. 1–9. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht.Google Scholar
  24. Chu C., Mortimer P.E., Wang H., Wang Y., Liu X. & Yu S. 2014. Allelopathic effects of Eucalyptus on native and introduced tree species. For. Ecol. Manage. 323: 79–84.CrossRefGoogle Scholar
  25. Cipollini D., Rigsby C.M. & Barto E.K. 2012. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38: 714–727.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cruz-Ortega R., Lara-Núñez A. & Anaya A.L. 2007. Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. Plant Signal. Behav. 2: 269–270.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dayan F.E., Howell J.L. & Weidenhamer J.D. 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Exp. Bot. 60: 2107–2117.PubMedPubMedCentralCrossRefGoogle Scholar
  28. de Souza Nascimento C.E., Tabarelli M., da Silva C.A.D., Leal I.R., de Souza Tavares W., Serrão J.E. & Zanuncio J.C. 2014. The introduced tree Prosopis juliflora is a serious threat to native species of the Brazilian Caatinga vegetation. Sci. Total Environ. 481: 108–113.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dewick P.M. 2009. Medicinal natural products: A biosynthetic approach, 3rd ed. John Wiley & Sons Ltd, West Sussex.CrossRefGoogle Scholar
  30. Djurdjevic L., Popovic Z., Mitrovic M., Pavlovic P., Jaric S., Oberan L. & Gajic G. 2008. Dynamics of bioavailable rhizosphere soil phenolics and photosynthesis of Arum maculatum L. in a lime-beech forest. Flora 203: 590–601.CrossRefGoogle Scholar
  31. Duke S.O. & Dayan F.E. 2006. Modes of action of phytotoxins from plants pp. 511–536. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht.Google Scholar
  32. Falkowski P.G. & Raven J.A., 2013. Aquatic photosynthesis, Second ed. Princeton University Press.CrossRefGoogle Scholar
  33. Farhoudi R. & Lee D.J. 2013. Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Proc. Natl. Acad. Sci. India Sect. B–Biol. Sci. 83: 447–452.CrossRefGoogle Scholar
  34. Ferguson J.J. & Rathinasabapathi B. 2003. Allelopathy: how plants suppress other plants [WWW Document]. Flórida IFAS Ext. https://doi.org/www.aphis.usda.gov/foia/FOLDE_10/AR00036513 Ferguson and Rathinasbapathi.pdf (accessed 1.1.15).Google Scholar
  35. Figueredo C.C., Giani A. & Bird D.F. 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion. J. Phycol. 43: 256–265.CrossRefGoogle Scholar
  36. Finkel Z.V, Beardall J., Flynn K.J., Quigg A., Rees T.A. V & Raven J.A. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32: 119–137.CrossRefGoogle Scholar
  37. Fistarol G.O., Legrand C. & Granéli E. 2003. Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar. Ecol. Prog. Ser. 255: 115–25.CrossRefGoogle Scholar
  38. Fitter A. 2003. Making Allelopathy Respectable. Science 301: 1337–1338.PubMedCrossRefGoogle Scholar
  39. Flesch G. & Rohmer M. 1988. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur. J. Biochem. 175: 405–411.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Friebe A., Roth U., Kück P., Schnabl H. & Schulz M. 1997. Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 44: 979–983.CrossRefGoogle Scholar
  41. Fuerst E.P. & Putnam A.R. 1983. Separating the competitive and allelopathic components of interference. J. Chem. Ecol. 9: 937–944.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gagliardo R.W. & Chilton W.S. 1992. Soil transformation of 2(3H)-Benzoxazolone of rye into phytotoxic 2-amino-3Hphenoxazin-3-one. J. Chem. Ecol. 18: 1683–1691.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gomes M.P., Le Manac’h S.G., Maccario S., Labrecque M., Lucotte M. & Juneau P. 2016. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic. Biochem. Physiol. 130: 65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gómez-Aparicio L. & Canham C.D. 2008. Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J. Ecol. 96: 447–458.CrossRefGoogle Scholar
  45. Gómez-Aparicio L., Zamora R., Gómez J.M., Hódar J.A., Castro J. & Baraza E. 2004. Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol. Appl. 14: 1128–1138.CrossRefGoogle Scholar
  46. Granéli E., Weberg M. & Salomon P.S. 2008. Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8: 94–102.CrossRefGoogle Scholar
  47. Grisi P.U., Ranal M.A., Gualtieri S.C.J. & Santana D.G. 2012. Allelopathic potential of Sapindus saponaria L. leaves in the control of weeds. Acta Sci. Agron. 34: 1–9.CrossRefGoogle Scholar
  48. Gross E.M. 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22: 313–339.CrossRefGoogle Scholar
  49. Harbone J.B. 1994. Introduction to Ecological Biochemistry, 4th ed. Academic Press.Google Scholar
  50. Haugland E. & Brandsaeter L. 1996. Experiments on bioassay sensitivity in the study of allelopathy. J. Chem. Ecol. 22: 1845–1859.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hejl A.M. & Koste K.L. 2004. Juglone disrupts root plasma membrane H-ATPase activity and impairs water pptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30: 453–471.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hong Y., Hu H.Y., Xie X., Sakoda A., Sagehashi M. & Li F.M. 2009. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 91: 262–269.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hortal S., Bastida F., Moreno J.L., Armas C., García C. & Pugnaire F.I. 2015. Benefactor and allelopathic shrub species have different effects on the soil microbial community along an environmental severity gradient. Soil Biol. Biochem. 88: 48–57.CrossRefGoogle Scholar
  54. Houle G. & Filion L. 2003. The effects of lichens on white spruce seedling establishment and juvenile growth in a sprucelichen woodland of subarctic Québec. Écoscience 10: 80–84.CrossRefGoogle Scholar
  55. Hussain M.I. & Reigosa M.J. 2011a. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. Plant Physiol. Biochem. 49: 1290–1298.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hussain M.I. & Reigosa M.J. 2011b. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, nonphotochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J. Exp. Bot. 62: 4533–4545.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Inderjit & Callaway R.M. 2003. Experimental designs for the study of allelopathy. Plant Soil 256: 1–11.CrossRefGoogle Scholar
  58. Inderjit & del Moral R. 1997. Is separating resource competition from allelopathy realistic? Bot. Rev. 63: 221–230.CrossRefGoogle Scholar
  59. Inderjit & Duke S. 2003. Ecophysiological aspects of allelopathy. Planta 217: 529–539.PubMedCrossRefPubMedCentralGoogle Scholar
  60. International Allelopathy Societ 1996. Constitution. Drawn up during the First World Congress on Allelopathy: a Science for the Future. Cadiz, Spain, 1996. Available at: https://doi.org/www.ias.uca.es/bylaws.htm#CONSTI, n.d.Google Scholar
  61. Ishii-Iwamoto E.L., Abrahim D., Sert M.A., Bonato C.M., Kelmer-Bracht A.M. & Bracht A. 2006. Mitochondria as a site of allelochemical action, pp. 267–284. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.Google Scholar
  62. Johansson J.F., Paul L.R., Finlay & R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Lett. 48: 1–13.CrossRefGoogle Scholar
  63. Jones W.P. & Kinghorn A.D. 2008. Biologically active natural products of the genus Callicarpa. Curr. Bioact. Compd. 4: 5–32.CrossRefGoogle Scholar
  64. Jose S. 2002. Black walnut allelopathy: current state of the science. In: Mallik A. & Inderjit (eds), pp. 149–172. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems SE–10. Birkhäuser Basel.CrossRefGoogle Scholar
  65. Jose S. & Gillespie A.R. 1998. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology. Plant Soil 203: 199–206.CrossRefGoogle Scholar
  66. Jose S., Williams R. & Zamora D. 2006. Belowground ecological interactions in mixed-species forest plantations. For. Ecol. Manage. 233: 231–239.CrossRefGoogle Scholar
  67. Jüttner E. 1999. Allelochemical control of natural photoautotrophic biofilms, pp. 43–50. In: Keevil C., Godfree A., Holt D. & Dow C. (eds), Biofilms in the Aquatic Environment. Royal Society of Chemistry, Cambridge.Google Scholar
  68. Kawano T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21: 829–37.PubMedPubMedCentralGoogle Scholar
  69. Kearns K.D. & Hunter M.D. 2001a. Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 42: 80–86.PubMedPubMedCentralGoogle Scholar
  70. Keating K.I. 1977. Allelopathic in?uence on blue-green bloom sequence in a eutrophic lake. Science 196: 886–887.CrossRefGoogle Scholar
  71. Keating K.I. 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Knaggs A.R. 2003. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20: 119–136.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kobayashi K. 2004. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 4: 1–7.CrossRefGoogle Scholar
  74. Körner S. & Nicklisch A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38: 862–871.CrossRefGoogle Scholar
  75. Kulik M.M. 1995. The potential for using cyanobacteria (bluegreen algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol. 101: 585–599.CrossRefGoogle Scholar
  76. Lara-Nuñez A., Romero-Romero T., Ventura J.L., Blancas V., Anaya A.L. & Cruz-Ortega R. 2006. Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant Cell Environ. 29: 2009–2016.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Le Pogam P., Herbette G. & Boustie J. 2014. Analysis of lichen metabolites, a variety of approaches, pp. 229–261. In: Upreti D.K., Divakar P.K., Shukla V. & Bajpai R. (eds), Recent Advances in Lichenology. Modern Methods and Approaches in Biomonitoring and Bioprospection.Google Scholar
  78. Legrand C., Rengefors K., Fistarol G.O. & Granéli E. 2003. Allelopathy in phytoplankton–biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419.CrossRefGoogle Scholar
  79. Lehle F.R. & Putnam A.R. 1982. Quantification of allelopathic potential of sorghum residues by novel indexing of richards’ function fitted to cumulative cress seed germination curves. Plant Physiol. 69: 1212–1216.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Leu E., Krieger-Liszkay A., Goussias C. & Gross E.M. 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol. 130: 2011–2018.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Levizou E.F.I., Karageorgou P., Psaras G.K. & Manetas Y. 2002. Inhibitory effects of water soluble leaf leachates from Dittrichia viscosa on lettuce root growth, statocyte development and graviperception. Flora–Morphol. Distrib. Funct. Ecol. Plants 197: 152–157.CrossRefGoogle Scholar
  82. Li F.M. & Hu H.Y. 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol. 71: 6545–6553.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li X., Wang J., Huang D., Wang L. & Wang K. 2011. Allelopathic potential of Artemisia frigida and successional changes of plant communities in the northern China steppe. Plant Soil 341: 383–398.CrossRefGoogle Scholar
  84. Li Z.-H., Wang Q., Ruan X., Pan C.-D. & Jiang D.-A., 2010. Phenolics and Plant Allelopathy. Molecules 15: 8933–8952.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Liu B.Y., Jiang P., Zhou A.E., Tian J.R. & Jiang S.Y. 2007. Effect of pyrogallol on the growth and pigment content of cyanobacteria-blooming toxic and nontoxic Microcystis aeruginosa. Bull. Environ. Contam. Toxicol. 78: 499–502.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lokajová V., Bačkorová M. & Bačkor M. 2014. Allelopathic effects of lichen secondary metabolites and their naturally occurring mixtures on cultures of aposymbiotically grown lichen photobiont Trebouxia erici (Chlorophyta). South African J. Bot. 93: 86–91.CrossRefGoogle Scholar
  87. Lotina-Hennsen B., King-Diaz B., Aguilar M.I. & Terrones M.H. 2006. Plant secondary metabolites. Targets and mechanisms of allelopathy, pp. 229–265. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.CrossRefGoogle Scholar
  88. Loydi A., Donath T.W., Eckstein R.L. & Otte A. 2015. Nonnative species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol. Invasions 17: 581–595.CrossRefGoogle Scholar
  89. Macías F., Oliveros-Bastidas A., Marín D., Carrera C., Chinchilla N. & Molinillo J.G. 2008. Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models. Phytochem. Rev. 7: 179–194.CrossRefGoogle Scholar
  90. Macias F.A., Marin D., Oliveros-Bastidas A., Varela R.M., Simonet A.M., Carrera C. & Molinillo J.M. 2003. Allelopathy as a new strategy for sustainable ecosystems development. Biol. Sci. Space. 17: 18–23.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Macías F.A., Molinillo J.M.G., Galindo J.C.G., Varela R.M., Simonet A.M. & Castellano D. 2001. The use of allelopathic studies in the search for natural herbicides. J. Crop Prod. 4: 237–255.CrossRefGoogle Scholar
  92. Macias F.A., Molinillo J.M.G., Varela R.M. & Galindo C.G. 2007. Allelopathy–a natural alternative for weed control. Pest Manag. Sci. 63: 327–34.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Maraschin-Silva F. & Aquila M.E.A. 2005. Potencial alelopático de Dodonaea viscosa (L.) Jacq. Iheringia 60: 91–98.Google Scholar
  94. Maraschin-Silva F. & Aqüila M.E.A. 2006. Contribuição ao estudo do potencial alelopático de espécies nativas. Rev. Árvore 30: 547–555.CrossRefGoogle Scholar
  95. Meeks J.C., Elhai J., Thiel T., Potts M., Larimer F., Lamerdin J., Predki P. & Atlas R. 2001. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth. Res. 70: 85–106.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Meier C. & Bowman W. 2008. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia 158: 95–107.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Mishra N.P., Mishra R.K. & Singhal G.S. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102: 903–910.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Molnár K. & Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforsch. C 65: 157–173.CrossRefGoogle Scholar
  99. Mulderij G., Mooij W.M., Smolders A.J.P. & Van Donk E. 2005. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquat. Bot. 82: 284–296.CrossRefGoogle Scholar
  100. Nakai S., Yutaka I. & Hosomi M. 2000. Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue–green algae Microcystis aeruginosa. Water Res. 34: 3026–3032.CrossRefGoogle Scholar
  101. Ni G.-Y., Schaffner U., Peng S.-L. & Callaway R. 2010. Acroptilon repens, an Asian invader, has stronger competitive effects on species from America than species from its native range. Biol. Invasions 12: 3653–3663.CrossRefGoogle Scholar
  102. Nilsson M.-C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98: 1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Oliva A., Moraes R.M., Watson S.B., Duke S.O. & Dayan F.E. 2002. Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic. Biochem. Physiol. 72: 45–54.CrossRefGoogle Scholar
  104. Orr G. & Jones G.J. 1998. Relashionship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43: 1604–1614.CrossRefGoogle Scholar
  105. Padisák J. 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of ecology. Arch. Für Hydrobiol. 107: 563–593.Google Scholar
  106. Pratt R. 1940. Studies on Chlorella vulgaris. V. Some properties of the growth inhibitor formed by Chlorella cells. Am. J. Bot. 29: 142–148.CrossRefGoogle Scholar
  107. Pratt R. 1944. Studies on Chlorella vulgaris. IX. Influence on growth of Chlorella of continous removal of chlorellin from the culture solution. Am. J. Bot. 31: 418–421.CrossRefGoogle Scholar
  108. Pratt R., Daniels T.C., Eiler J.J., Gunnison J.B., Kumler W.D., Oneto J.F., Spoehp H.A., Hardin G.J., Milner H.W., Smith J.H.C. & Strain H.H. 1944. Chlorellin, an antibacterial substance from Chlorella. Science 99: 351–352.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Pratt R. & Fong J. 1940. Studies on Chlorella vulgaris. II Further evidence that Chlorella cells form a growth-inhibiting substance. Am. J. Bot. 27: 431–436.CrossRefGoogle Scholar
  110. Rengefors K. & Legrand C. 2001. Toxicity in Peridinium aciculiferum–an adaptive strategy to outcompete other winter phytoplankton? Limnol. Oceanogr. 46: 1990–1997.CrossRefGoogle Scholar
  111. Rice E.L. 1984. Allelopathy, 2nd ed. Academic Press, New York, NY.Google Scholar
  112. Rohmer M. 1999. The discovery of the mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Romagni J.G., Allen S.N. & Dayan F.E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26: 303–313.CrossRefGoogle Scholar
  114. Sánchez-Moreiras A.M., de la Peña T.C. & Reigosa M.J. 2008. The natural compound benzoxazolin-2 (3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69: 2172–2179.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sánchez-Moreiras A.M., Martinez-Peñalver A. & Reigosa M.J. 2011. Early senescence induced by 2–3 H-benzoxazolinone (BOA) inArabidopsis thaliana. J. Plant Physiol. 168: 863–870.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Schlegel I., Doan N.T., Chazal N. & Smith G.D. 1999. Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J. Appl. Phycol. 10: 471–479.CrossRefGoogle Scholar
  117. Schmidt S.K. & Ley R.E. 1999. Microbial competition and soil structure limit the expression of allelochemicals in nature, pp. 339–351. In: Inderjit, Dakshini K. & Foy C. (eds), Principles and Practices in Plant Ecology. CRC Press, Boca Raton.Google Scholar
  118. Schrader K.K., Nanayakkara N.P.D., Tucker C.S., Rimando A.M., Ganzera M. & Schaneberg B.T. 2003. Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl. Environ. Microbiol. 69: 5319–5327.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Scognamiglio M., D’Abrosca B., Esposito A., Pacifico S., Monaco P. & Fiorentino A. 2013. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem. Rev. 12: 803–830.CrossRefGoogle Scholar
  120. Sedia E.G. & Ehrenfeld J.G. 2003. Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100: 447–458.CrossRefGoogle Scholar
  121. Sene M., Dore T. & Pellissier F. 2000. Effect of phenolic acids in soil under and between rows of a prior sorghum (Sorghum bicolor) crop on germination, emergence and seedling growth of peanut (Arachis hypogea). J. Chem. Ecol. 26: 625–637.CrossRefGoogle Scholar
  122. Shannon-Firestone S. & Firestone J. 2015. Allelopathic potential of invasive species is determined by plant and soil community context. Plant Ecol. 216: 491–502.CrossRefGoogle Scholar
  123. Stark S., Kytöviita M.-M. & Neumann A.B. 2007. The phenolic compounds in Cladonia lichens are not antimicrobial in soils. Oecologia 152: 299–306.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Stolte W., Karlsson C., Carlsson P. & Granéli E. 2002. Modeling the increase of nodularin content in Baltic sea Nodularia spumigena during stationary phase in phosphorus limited batch cultures. FEMS Microbiol. Ecol. 41: 211–220.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Suikkanen S., Fistarol G.O. & Granéli E. 2005. Effects of cyanobacterial allelochemicals on a natural plankton community. Mar. Ecol. Prog. Ser. 287: 1–9.CrossRefGoogle Scholar
  126. Takahashi S. & Murata N. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 13: 178–82.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Talukdar D. 2013. Allelopathic effects of Lantana camara L. on Lathyrus sativus L.: Oxidative imbalance and cytogenetic consequences. Allelopath. J. 31: 71–90.Google Scholar
  128. Teerarak M., Laosinwattana C. & Charoenying P. 2010. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresour. Technol. 101: 5677–5684.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Thorpe A.S., Thelen G.C., Diaconu A. & Callaway R.M. 2009. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J. Ecol. 97: 641–645.CrossRefGoogle Scholar
  130. Tilman D. 1988. Plant strategies and the structure and dynamics of plant communities. Princeton University Press, Princeton, New Jersey.Google Scholar
  131. Tilman D. 1994. Competition and Biodiversity in Spatially Structured Habitats. Ecology 75: 2–16.CrossRefGoogle Scholar
  132. Tongma S., Kobayashi K. & Usui K. 1998. Allelopathic activity of Mexican sun?ower (Tithonia diversifolia) in soil. Weed Sci. 46: 432–437.CrossRefGoogle Scholar
  133. von Elert E. & Jüttner F. 1997. Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria). Limnol. Oceanogr. 42: 1796–1802.CrossRefGoogle Scholar
  134. Waller G.R., Jurzysta M. & Thorne R.L.A. 1993. Allelopathic activity of root saponins from alfalfa (Medicago sativa L.) on weeds and wheat. Bot. Bull. Acad. Sin. 34: 1–11.Google Scholar
  135. Weidenhamer J.D. 1996. Distinguishing resource competition and chemical interference: Overcoming the methodological impasse. Agron. J. 88: 866–875.CrossRefGoogle Scholar
  136. Willis R.J. 2007. The history of allelopathy. Springer Science & Business Media.Google Scholar
  137. Windust A.J., Quilliam M.A., Wright J.C. & McLachlan J. 1997. Comparative toxicity of the diarrheic shellfish poisons, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35: 1591–1603.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wolfe J.M. & Rice E.L., 1979. Allelopathic interactions among algae. J. Chem. Ecol. 5: 533–542.CrossRefGoogle Scholar
  139. Wu H., Pratley J., Lemerle D. & Haig T. 1999. Crop cultivars with allelopathic capability. Weed Res. 39: 171–180.CrossRefGoogle Scholar
  140. Wurst S., Vender V. & Rillig M. 2010. Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecol. 211: 19–26.CrossRefGoogle Scholar
  141. Yu J.Q., Ye S.F., Zhang M.F. & Hu W.H. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31: 129–139.CrossRefGoogle Scholar
  142. Yu Z.W., Sun W.H. & Guo K.Q. 1992. Allelopathic effects of several aquatic plants on algae. Acta Hydrobiol. Sin. 16: 1–7.Google Scholar
  143. Zeng R.S. 2014. Allelopathy–The solution is indirect. J. Chem. Ecol. 40: 515–516.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Zhang C., Ling F., Yi Y.L., Zhang H.Y. & Wang G.X. 2014. Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa. J. Appl. Phycol. 26: 323–332.CrossRefGoogle Scholar
  145. Zhang D.J., Zhang J., Yang W.Q. & Wu F.Z. 2010. Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecol. Res. 25: 13–23.CrossRefGoogle Scholar
  146. Zhou Y.H. & Yu J.Q. 2006. Allelochemicals and photosynthesis, pp. 127–139. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.CrossRefGoogle Scholar
  147. Zhu M., Ma C., Wang Y., Zhang L., Wang H., Yuan Y. & Du K. 2009. Effect of extracts of Chinese pine on its own seed germination and seedling growth. Front. Agric. China 3: 353–358.CrossRefGoogle Scholar
  148. Zhu X., Zhang J. & Ma K. 2011. Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One 6: e25393.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Marcelo Pedrosa Gomes
    • 1
  • Queila Souza Garcia
    • 1
  • Leilane Carvalho Barreto
    • 1
  • Lúcia Pinheiro Santos Pimenta
    • 2
  • Miele Tallon Matheus
    • 1
  • Cleber Cunha Figueredo
    • 1
    Email author
  1. 1.Departamento de Botânica, Avenida Antônio CarlosUniversidade Federal de Minas Gerais, Instituto de Ciências BiológicasBelo HorizonteBrazil
  2. 2.Universidade Federal de Minas GeraisDepartamento de QuímicaBelo HorizonteBrazil

Personalised recommendations