Advertisement

Biologia

, Volume 72, Issue 2, pp 204–214 | Cite as

Ecology-based mapping of mosquito breeding sites for area-minimized BTI treatments

  • Zoltán KenyeresEmail author
  • Sándor Tóth
  • Tamás Sáringer-Kenyeres
  • András Márkus
  • Norbert Bauer
Section Zoology

Abstract

From 1997 until 2014 we carried out a GIS-based systematic mapping of mosquito breeding sites on a 2,690 km2 area in the important touristic regions of Hungary. During the process of data collection of the mosquito fauna, 42,547 adults of 26 species and 34,409 larvae of 28 species were collected. The ecological characteristics of the breeding sites were recorded by means of 4,543 samples. We have specified 13,808 breeding sites playing important role in mosquito harm for the human population with an overall area of 7,967 hectares in topologically correct digital maps. We have established that approximately 1% of the administrative area of mosquito affected lands and 10% of wetlands can be considered as target areas for biological control taking human viewpoints into account. According to the results of our research, the most environment-friendly (affecting about 10% of the wetland areas routinely treated), economical and effective mosquito control can be carried out by BTI treatments based on GIS mappings.

Key words

mosquitoes community ecology aerial photographs GIS biological control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonzo D., Grillet M.E., Liria J., Navarro J.-C., Weaver S.C. & Barrera R. 2005. Ecological characterization of the aquatic habitats of mosquitoes (Diptera: Culicidae) in enzootic foci of Venezuelan Equine Encephalitis Virus in Western Venezuela. J. Med. Entomol. 42 (3): 278–284. DOI:  https://doi.org/10.1093/jmedent/42.3.278PubMedCrossRefPubMedCentralGoogle Scholar
  2. Barnes C.M. & Cibula W.G. 1979. Some implications of remote sensing technology in insect control programs including mosquitoes. Mosq. News 39 (2): 271–282.Google Scholar
  3. Bauer N., Kenyeres Z., Tóth S., Sáringer-Kenyeres T. & Sáringer Gy. 2011. Connections between the habitat pattern and the pattern of the mosquito larval assemblages. Biologia 66 (5): 877–885. DOI:  https://doi.org/10.2478/s11756-011-0091-5CrossRefGoogle Scholar
  4. Becker N. 1989. Life strategies of mosquitoes as an adaptation to their habitats. Bull. Soc. Vector. Ecol. 14 (1): 6–25.Google Scholar
  5. Becker N. & Margalit J. 1993. Use of Bacillus thuringiensis against mosquitoes and blackflies, pp. 147–170. In: Entwistle P., Bailey M.J., Cory J. & Higgs S. (eds), Bacillus thuringiensis, an environmental biopesticide: Theory and Practice. Chichester: Wiley and Sons, 331 pp. ISBN: 0471933066Google Scholar
  6. Becker N., Petric D., Zgomba M., Boase C., Dahl C., Lane J. & Kaiser A. 2003. Mosquitoes and Their Control. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moskow, 498 pp. eBook ISBN: 978-1-4757-5897-9, DOI:  https://doi.org/10.1007/978-1-4757-5897-9CrossRefGoogle Scholar
  7. Blowers A. 1997. Environmental Policy: Ecological Modernisation or the Risk Society? Urban Studies 34 (5–6): 845–871. DOI:  https://doi.org/10.1080/0042098975853CrossRefGoogle Scholar
  8. Bozicic-Lothrop B. 1988. Comparative ecology of Aedes dorsalis complex in the Holarctic. Proc. Pap. Annu. Conf. Mosq. Vector Control Assoc. Calif. 56: 139–145.Google Scholar
  9. Bölöni J., Molnár Z., Illyés E. & Kun A. 2007. A new habitat classification and manual for standardized habitat mapping. Annali di Botanica n. s. 7: 105–126. DOI:  https://doi.org/10.4462/annbotrm-9085Google Scholar
  10. Bruce-Chwatt L.J. & Zulueta J. 1980. The Rise and Fall of Malaria in Europe: A Historico-epidemiological Study. Oxford University Press, Oxford, New York 288 pp. ISBN: 0198581688Google Scholar
  11. Chapman H.C. 1960. Observation on Aedes melanimon and Aedes dorsalis in Nevada. Ann. Entomol. Soc. Am. 53 (6): 706–708. DOI:  https://doi.org/10.1093/aesa/53.6.706CrossRefGoogle Scholar
  12. Côté J.-C. 2007. How early discoveries about Bacillus thuringiensis prejudiced subsequent research and use, Chapter 18, pp. 169–178. DOI:  https://doi.org/10.1079/9781845932657.0169. In: Vincent C., Goettel M.S. & Lazarovits G. (eds), Biological Control: A Global Perspective: Case Studies from Around the World, CABI, Wallingford, 440 pp. ISBN: 9781845932657CrossRefGoogle Scholar
  13. Crowder D.W. & Jabbour R. 2014. Relationships between biodiversity and biological control in agroecosystems: Current status and future challenges. Biol. Control 75: 8–17. DOI:  https://doi.org/10.1016/j.biocontrol.2013.10.010CrossRefGoogle Scholar
  14. Dale P.E.R., Ritchie S.A., Territo B.M., Morris C.D., Muhar A. & Kay B.H. 1998. An overview of remote sensing and GIS for surveillance of mosquito vector habitats and risk assessment. J. Vector Ecol. 23 (1): 54–61. PMID: 9673930PubMedPubMedCentralGoogle Scholar
  15. Dévai Gy. 1997. IX.3.2. Víztér-tipológiai törzsadattár (V-NÉR) [Water-types database], pp. 293–298. In: Fekete G., Molnár Z. & Horváth F. (eds), Nemzeti Biodiverzitás-monitorozó Rendszer II. A magyarországi élőhelyek leírása, határozója és a Nemzeti Élőhely-osztályozási Rendszer [Description and Handbook of Habitats in Hungary and National Habitat System II.], HNHM, Budapest, 353 pp. ISBN: 963-7093-45-1Google Scholar
  16. Elleuch J., Zghai R.Z., Jemaŕ M., Azzouz H., Tounsi S. & Jaoua S. 2014. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. Int. J. Biol. Macromolec. 65: 148–154. DOI:  https://doi.org/10.1016/j.ijbiomac.2014.01.029CrossRefGoogle Scholar
  17. European Environment Agency 2011. Landscape Fragmentation in Europe. Joint EEA-FOEN report, Copenhagen, 87 pp. DOI:  https://doi.org/10.2800/78322, ISBN: 978-92-9213-215-6Google Scholar
  18. Erdős G., Koncz Á. & Kecskeméti I. 2009. A csípőszúnyogok elleni védekezés hazai történeti áttekintése [History of the mosquito control in Hungary]. Pannónia Füzetek (Csípőszúnyogok gyérítésének gyakorlata Magyarországon (cikkgy˝ujtemény)) 3: 6–27.Google Scholar
  19. Fiedler A.K., Landis D.A. & Wratten S.D. 2008. Maximizing ecosystem services from conservation biological control: The role of habitat management. Biol. Control 45 (2): 254–271. DOI:  https://doi.org/10.1016/j.biocontrol.2007.12.009CrossRefGoogle Scholar
  20. Goldberg L.J. & Margalit J. 1977. A bacterial spore demonstrating rapid larvicidas activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens complex. Mosq. News 37 (3): 355–358.Google Scholar
  21. Guille G. 1976. Recherches éco-éthologiques sur Coquillettidia (Coquillettidia)richiardii (Ficalbi), 1889 (Diptera–Culicidae) du littoral méditerranéen français. II. Milieu et comportement. Ann. Sci. Nat. Zool. Biol. Anim. 12, 18: 5–112.Google Scholar
  22. Hassan A.N. & Onsi H.M. 2004. Remote sensing as a tool for mapping mosquito breeding habitats and associated health risk to assist control efforts and development plans: a case study in Wadi El Natroun. J. Egypt. Soc. Parasitol. 34 (2): 367–382. PMID: 15287164PubMedPubMedCentralGoogle Scholar
  23. Hay S.I., Snow R.W. & Rogers D.J. 1998. From predicting mosquito habitat to malaria seasons using remotely sensed data: practice, problems and perspectives. Parasitol. Today 14 (8): 306–313. DOI:  https://doi.org/10.1016/S0169-4758(98)01285-XPubMedCrossRefPubMedCentralGoogle Scholar
  24. Hayes R.O., Maxwell E.L., Mitchell C.J. & Woodzick T.L. 1985. Detection, identification, and classification of mosquito larval habitats using remote sensing scanners in earth-orbiting atellites. Bull. WHO 63 (2): 361–374. PMID: 2861917PubMedPubMedCentralGoogle Scholar
  25. Kenyeres Z., Bauer N. & Tóth S. 2010. A Culicidae-lárvaegyüttesek élőhely-preferenciáinak áttekintése [Overview of the habitat-preferences of the Culicidae larval assemblages]. Pannónia Füzetek (Csípőszúnyog-tenyészőhelyek térképezésének gyakorlata (cikkgy˝ujtemény)) 4: 50–70.Google Scholar
  26. Kenyeres Z., Bauer N., Tóth S. & Sáringer-Kenyeres T. 2011. Habitat requirements of mosquito larvae. Rom. J. Biol.-Zool. 56 (2): 147–162.Google Scholar
  27. Kenyeres Z. & Sáringer-Kenyeres T. 2010. Folyóártereken végzett tenyészőhely-térképezések tapasztalatai [Observations of breeding site-mapping in flood-plains]. Pannónia Füzetek (Csípőszúnyog-tenyészőhelyek térképezésének gyakorlata (cikkgy˝ujtemény) 4: 71–79.Google Scholar
  28. Kenyeres Z. & Tóth S. 2008. Csípőszúnyog határozó II. (Imágók) [Identification keys to Mosquitoes II. (Adults)]. Pannónia Füzetek (Csípőszúnyog határozó II. (Imágók)) 2: 1–96.Google Scholar
  29. Kenyeres Z. & Tóth S. 2012. Landscape-structure determined mosquito diversity in Hungary (Central-Europe). J. Mosq. Res. 2 (5): 32–38. DOI:  https://doi.org/10.5376/jmr.2012.02.0005Google Scholar
  30. Kenyeres Z., Tóth S., Bauer N. & Sáringer-Kenyeres T. 2012. Life-strategy based structural features of the larval mosquito metacommunities in Hungary. Ekológia 31 (2): 210–230. DOI:  https://doi.org/10.4149/eko_2012_02_210CrossRefGoogle Scholar
  31. Kistemann T., Dangendorf F. & Schweikart J. 2002. New perspectives on the use of Geographical Information Systems (GIS) in environmental health sciences. J. Hyg. Environ. Health 205 (3): 169–181. DOI:  https://doi.org/10.1078/1438-4639-00145CrossRefGoogle Scholar
  32. Knight J.M., Phinn S.R. & Dale P. 1999. Development of an operational approach for mapping mosquito breeding sites from airborne synthetic aperture radar, 5 pp. Workshop. NASA PACRIM Workshop, Maui High-Performance Computing Cen., Kihei, 26–27 August, 1999. NASA, Pasadena, USA.Google Scholar
  33. Kuhn R. 2002. Colonisation of the floodwater mosquito Aedes vexans (Meigen) (Diptera: Culicidae). Eur. Mosq. Bull. 12: 7–16.Google Scholar
  34. Lacaux J.P., Tourre Y.M., Vignolles C., Ndione J.A. & Lafaye M. 2007. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 106 (1): 66–74. DOI:  https://doi.org/10.1016/j.rse.2006.07.012CrossRefGoogle Scholar
  35. Liu J. & Chen X.P. 2006. Relationship of remote sensing normalized differential vegetation index to Anopheles density and malaria incidence rate. Biomed. Environ. Sci. 19 (2): 130–132. PMID: 16827184PubMedPubMedCentralGoogle Scholar
  36. Makara G. 1944. Új rovarirtó klórozott szénhydrogének [New insecticide chlorinated hydrocarbons]. Népegészségügy 25: 308–311.Google Scholar
  37. Mihályi F. & Gulyás M. 1963. Magyarország csípő szúnyogjai. Leírásuk, életmódjuk és az ellenük való védekezés [Mosquitoes of Hungary. Descriptions, Life-Strategies and Control]. Akadémiai Kiadó, Budapest, 229 pp.Google Scholar
  38. Mittal P.K. 2003. Biolarvicides in vector control: challenges and prospects. J. Vector Borne Dis. 40 (1-2): 20–32. PMID: 15119068PubMedPubMedCentralGoogle Scholar
  39. Mohrig W. 1969. Die Culiciden Deutschlands. Untersuchungen zur Taxonomie, Biologie und Ökologie der einheimischen Stechmücken. Parasitologishe Schriftenreihe, H. 18., VEB Gustav Fischer Verlag, Jena, Germany, 260 pp.Google Scholar
  40. Mushinzimana E., Munga S., Minakawa N., Li L., Feng C.C., Bian L., Kitron U., Schmidt C., Beck L., Zhou G., Githeko A.K. & Yan G. 2006. Landscape determinants and remote sensing of Anopheline mosquito larval habitats in the western Kenya highlands. Malar. J. 5 (1): 13–23. DOI:  https://doi.org/10.1186/1475-2875-5-13PubMedPubMedCentralCrossRefGoogle Scholar
  41. Opoku A.A., Ansa-Asare O.D. & Amoako J. 2007. The occurrences and habitat characteristics of mosquitoes in Accra, Ghana. West. Afr. J. Appl. Ecol. 11: 81–86.Google Scholar
  42. Pope K.O., Rejmankova E., Savage H.M., Arredondo-Jimenez J.I., Rodriguez M.H. & Roberts D.R. 1994. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol. Appl. 4 (1): 81–90. DOI:  https://doi.org/10.2307/1942117PubMedCrossRefPubMedCentralGoogle Scholar
  43. Reunala T., Brummer-Korvenkontio H. & Palosuo T. 1994. Are we really allergic to mosquito bites? Ann. Med. 26 (4): 301–306. DOI:  https://doi.org/10.3109/07853899409147906PubMedCrossRefPubMedCentralGoogle Scholar
  44. Sáringer Gy., Szalay-Marzsó L. & Tóth S. 1998. Experiences with the use of BTI in Hungary at Lake Balaton. Isr. J. Entomol. 32: 79–87.Google Scholar
  45. Schäfer M. 2008. Mapping potential mosquito breeding sites using satellite images. Report on methodology tests. Uppsala University, Uppsala, 16. pp.Google Scholar
  46. Szabó S., Kenyeres Z., Bauer N., Gosztonyi G. & Sáringer-Kenyeres T. 2008. Mapping of mosquito (Culicidae) breeding sites using predictive geographic information methods. Dissertation Commissions of Cultural Landscape–Methods of Landscape Research 8: 255–270.Google Scholar
  47. Thomas C.J. & Lindsay S.W. 2000. Local-scale variation in malaria infection amongst rural Gambian children estimated by satellite remote sensing. Trans. R. Soc. Trop. Med. Hyg. 94 (2): 159–163. DOI:  https://doi.org/10.1016/S0035-9203(00)90257-8PubMedCrossRefPubMedCentralGoogle Scholar
  48. Tóth S. 1977. Quantative and qualative investigations into the Culicidae-fauna of the Tisza-basin. Tiscia (Szeged) 12: 93–99.Google Scholar
  49. Tóth S. 1991. Adatok a mocsári szúnyog, Mansonia (Coquillettidia) richiardii (Ficalbi, 1889) életmódjához és magyarországi elterjedéséhez (Diptera: Culicidae). Folia Mus. Hist.-Nat. Bakonyiensis 10: 137–178.Google Scholar
  50. Tóth S. 2007. Csípőszúnyog határozó I. (Lárvák) [Identification keys to mosquitoes I. (Larvae)]. Pannónia Füzetek 1: 13–96.Google Scholar
  51. Tóth S. & Sáringer Gy. 1997. Mosquitos of the Lake Balaton and their Control. Acta Phytopathol. Entomol. Hung. 32: 377–391.Google Scholar
  52. Tóth S. & Sáringer Gy. 2007. Species of the mosquito fauna and their control in the region of the Lake Balaton. Acta Phytopathol. Entomol. Hung. 42 (2): 399–416.Google Scholar
  53. Tóth S. & Kenyeres Z. 2012. Revised checklist and distribution maps of mosquitoes (Diptera, Culicidae) of Hungary. Eur. Mosq. Bull. 30: 30–65.Google Scholar
  54. Tran A., Poncon N., Toty C., Linard C., Guis H., Ferre J.B., Lo Seen D., Roger F., de La Rocque S., Fontenille D. & Baldet T. 2008. Using remote sensing to map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a potential malaria vector in Southern France. Int. J. Health. Geogr. 7 (9): 1–12. DOI:  https://doi.org/10.1186/1476-072X-7-9Google Scholar
  55. WHO 1999. Microbial Pest Control Agent–Bacillus thuringiensis. Environmental Health Criteria 217, World Health Organization, Geneva, 109 pp. ISBN: 92-4-157217-5Google Scholar
  56. Winqvist C. 2011. Biodiversity and Biological Control. Effects of Agricultural Intensity at the Farm and Landscape Scale. Doctoral Thesis Swedish University of Agricultural Sciences Uppsala, Uppsala, 56 pp. ISBN: 978-91-576-7584-2Google Scholar
  57. Zou L., Miller S.N. & Schmidtmann E.T. 2006. Mosquito larval habitat mapping using remote sensing and GIS: Implications of coalbed methane development and the West Nile Virus. J. Med. Entomol. 43 (5): 1034–1041. DOI:  https://doi.org/10.1603/0022-2585(2006)43[1034:MLHMUR]2.0.CO;2PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Zoltán Kenyeres
    • 1
    Email author
  • Sándor Tóth
    • 2
  • Tamás Sáringer-Kenyeres
    • 3
  • András Márkus
    • 4
  • Norbert Bauer
    • 5
  1. 1.Acrida Conservational Research L.P.TapolcaHungary
  2. 2.ZircHungary
  3. 3.Pannónia Centre Expert and Counselling Coordinative Ltd.KeszthelyHungary
  4. 4.EcoMap L.P.PécsHungary
  5. 5.Department of BotanyHungarian Natural History MuseumBudapestHungary

Personalised recommendations