Advertisement

Biologia

, Volume 72, Issue 2, pp 175–183 | Cite as

Ecology of moss-dwelling rotifers in a raised bog: Differentiation of rotifer communities in microhabitats

  • Irena Bielańska-GrajnerEmail author
  • Tomasz Mieczan
  • Anna Cieplok
Section Zoology

Abstract

Peat bogs play key roles in preserving the stability of ecological relationships, but are some of the fastest disappearing and most endangered ecosystems in Europe. The aims of this study were: (1) to compare the distribution, species richness, diversity, and density of rotifers in microhabitats of a raised bog; and (2) to verify the hypothesis that rotifer density and species composition are dependent on seasonal factors, moss moisture content, and the dominant species of mosses in the microhabitats. Sampling was done monthly from April to November in 2013–2014 in the bog Moszne in eastern Poland (51°27′28.7″ N, 23°07′15.8″ E). The microhabitats sampled included hummocks, slopes, and hollows. A total of 40 rotifer taxa were identified. The highest species richness occurred in the hollows (40), dominated by Sphagnum angustifolium. Markedly lower numbers of taxa were observed on the slopes (28) dominated by Sphagnum magellanicum and Sphagnum rubellum, and in the hummocks dominated by S. magellanicum and Polytrichum sp. During the entire study period all the studied microhabitats were dominated by the Bdelloidea: Habrotrocha angusticollis, Habrotrocha lata, Habrotrocha sp., Dissotrocha macrostyla, Philodina sp. as well as Rotaria rotatoria and Rotaria tardigrada. The greatest species diversity of rotifers was recorded in the hollows (diversity index H′ = 2.307) and the smallest in the hummocks (H′ = 0.769). The density of rotifers was also the highest in the hollows. Statistically significant differences in densities of rotifers between the microhabitats were found (Kruskal–Wallis test: H′(2, n = 33)= 10.33, P = 0.005). The greatest diversity of rotifers and the greatest density were observed in spring.

Key words

peat biodiversity seasonal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateman L. & Davis C.C. 1980. The Rotifera of Hummock-Hollow formation in a poor (Mesotrophic) fen in Newfoundland. Int. Rev. Hydrobiol. 65 (1): 127–153. DOI:  https://doi.org/10.1002/iroh.19800650108CrossRefGoogle Scholar
  2. Bielańska-Grajner I., Cudak A. & Mieczan T. 2011a. Epiphytic rotifer abundance and diversity associated with moss in bogs and fens in the Polesie National Park (eastern Poland). Int. Rev. Hydrobiol. 96 (1): 29–38. DOI:  https://doi.org/10.1002/iroh.201011290CrossRefGoogle Scholar
  3. Bielańska-Grajner I., Ejsmont-Karabin J. & Iakovenko N. 2013. Wrotki Rotifera Bdelloidea, Fauna słodkowodna Polsk 32 [Rotifers Rotifera Bdelloidea. The Freshwater Fauna of Poland 32], Wydawnictwo Uniwersytetu Łódzkiego, Łódź, 128 pp. ISBN: 8379690850Google Scholar
  4. Bielańska-Grajner I., Mieczan T. & Cudak A. 2011b. Cooccurrence of ciliates and rotifers in peat mosses in the Polesie National Park (SE Poland). Polish. J. Environ. Stud. 20 (3): 533–540.Google Scholar
  5. Donner P. J. 1965. Ordnung Bdelloidea (Rotatoria, Rädertiere). Bestimmungsbücher zur Bodenfauna Europas, 6. Akademie-Verlag, Berlin, 297 pp.Google Scholar
  6. Donner P.J. 1972. Die Rädertierbestände submerser Moose und weiterer Merotope im Bereich der Stauraüme der Donau an der deutch-österreichischen Landesgrenze. Arch. Hydrobiol. Suppl. 44 (1): 49–114.Google Scholar
  7. Ejsmont-Karabin J., Radwan S. & Bielańska-Grajner I. 2004. Monogononta–atlas gatunków. 32B [Monogononta–Atlas Species 32B], pp. 147–448. In: Radwan S. (ed.), Wrotki (Rotifera). Fauna słodkowodna Polski 32 [Rotifers (Rotifera), The Freshwater Fauna of Poland 32], Polskie Towarzystwo Hydrobiologiczne, Uniwersytet Łódzki, Łódź, 447 pp. ISBN: 8391877345Google Scholar
  8. Flessa H., Wild U., Klemisch M. & Pfadenhauer J. 1998. Nitrous oxide and methane fluxes from organic soils under agriculture. Eur. J. Soil Sci. 49 (2): 327–335. DOI:  https://doi.org/10.1046/j.1365-2389.1998.00156.xCrossRefGoogle Scholar
  9. Fontaneto D., Iakovenko N. & De Smet W.H. 2015. Diversity gradients of rotifer species richness in Antarctica. Hydrobiologia 761 (1): 235–248. DOI:  https://doi.org/10.1007/s10750-015-2258-5CrossRefGoogle Scholar
  10. Francez A.J. & Dévaux J. 1985. Répartition des rotif`eres dans deux lacs-tourbi`eres du Massif Central (France). Hydrobiologia 128 (3): 265–276. DOI:  https://doi.org/10.1007/BF00006823CrossRefGoogle Scholar
  11. Gilbert D., Amblard C., Bourdier G. & Francez A.J. 1998. Shortterm effect of nitrogen enrichment on the microbial communities of a peatland. Hydrobiologia 373: 111–119. DOI:  https://doi.org/10.1023/A:1017091926454CrossRefGoogle Scholar
  12. Gilbert D. & Mitchell E.A.D. 2006. Microbial diversity in Sphagnum peatlands, pp. 287–318. DOI:  https://doi.org/10.1016/S0928-2025(06)09013-4. In: Martini I.P., Martinez Cortizas A., Chesworth W. (eds), Peatlands, Vol. 9: Evolution and Records of Environmental and Climate Changes, Elsevier, Oxford UK, 606 pp. ISBN: 9780444528834CrossRefGoogle Scholar
  13. Glime J.M. 2013. Invertebrates: Rotifers. Chapt. 4–5. In: Glime J.M., Bryophyte Ecology. Vol. 2. Bryological Interaction, 4-5-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists, 26 pp. https://doi.org/www.bryoecol.mtu.edu (accessed 20.10.2015).Google Scholar
  14. Golterman H. L. 1969. Methods for Chemical Analysis of Freshwaters. International Biological Programme Handbook, 8. Blackwell Scientific Publications, Oxford, Edinburgh, 172 pp.Google Scholar
  15. Gotelli N.J. & Graves G.R. (eds). 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, 368 pp. ISBN: 1-56098-657-3Google Scholar
  16. Hingley M. 1993. Microscopic Life in Sphagnum. Illustrated by Hayward P. & Herrett D. Naturalists’ Handbook, 20. [i-iv] Richmond Publishing, Co. Ltd. Slough, England, 78 pp. ISBN-10: 0855462914Google Scholar
  17. Křoupalová V., Opravilová V., Bojková J. & Horsák M. 2013. Diversity and assemblage patterns of microorganisms structured by the groundwater chemistry gradient in spring fens. Ann. Limnol.–Int. J. Limnol. 49 (3): 207–223. DOI:  https://doi.org/10.1051/limn/2013056CrossRefGoogle Scholar
  18. Kuczyńska-Kippen N. 2008. Spatial distribution of zooplankton communities between the Sphagnum mat and open water in a dystrophic lake. Pol. J. Ecol. 56 (1): 57–64.Google Scholar
  19. Kutikova L. A. 2005. Bdelloidnye kolovratki fauny Rossii [The Bdelloid Rotifers of the Fauna of Russia]. Proceedings of the Zoological Institute of the USSR Academy of Sciences, 305 KMK. Scientific Press and Inst. Technol. Res. Publ., 316 pp. ISBN: 5873172463Google Scholar
  20. Linhart J. 2002. Bdelloidea/Monogononta abundance ratio: a possible measure of the relation of stream rotifers to flow velocity? Acta Univ. Palack. Olomouc. Fac. Rer. Nat. Biol. 39–40: 101–110.Google Scholar
  21. Madaliński K. 1961. Moss dwelling rotifers of Tatra streams. Pol. Arch. Hydrobiol. 9: 243–263.Google Scholar
  22. Mieczan T. 2009. Ciliates in Sphagnum peatlands: vertical microdistribution, and relationships of species assemblages with environmental parameters. Zool. Stud. 48 (1): 33–48.Google Scholar
  23. Mieczan T., Niedźwiecki M., Adamczuk M. & Bielańska-Grajner I. 2015. Stable isotope analyses revealed high seasonal dynamics in the food web structure of a peatbog. Int. Rev. Hydrobiol. 100 (5-6): 141–150. DOI:  https://doi.org/10.1002/iroh.201501788CrossRefGoogle Scholar
  24. Mitchell E.A.D., Gilbert D. & Buttler A. 2003. Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb. Ecol. 46 (2): 187–199. DOI:  https://doi.org/10.1007/BF03036882CrossRefGoogle Scholar
  25. MVSP-A. 2002. Multivariate Statistical Package 3.1. Kovach. Computering Services.Google Scholar
  26. Nijssen D., Rousseau R. & Van Hecke P. 1998. The Lorenz curve: a graphical representation of evenness. Coenoses 13 (1): 33–38.Google Scholar
  27. Nogrady T. 1980. Canadian rotifers II. Parc Mont Tremblant, Quebec. Hydrobiologia 71 (1): 35–46. DOI:  https://doi.org/10.1007/BF000.5826CrossRefGoogle Scholar
  28. Nogrady T., Pourriot R., Segers H. 1995. Rotifera. Vol. 3: The Notommatidae and the Scaridiidae. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. 8 SPB. Academic Publishing bv, Amsterdam, 248 pp.Google Scholar
  29. Opavilová V. & Hájek M. 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the western Carpathians. Acta Protozool. 45: 191–204.Google Scholar
  30. Pejler B. & Berzins B. 1993. On the ecology of mire rotifers. Limnologica 23: 295–300.Google Scholar
  31. Pejler B. & Bērziņš B. 1994. On the ecology of Lecane (Rotifera). Hydrobiologia 273 (2): 77–80. DOI:  https://doi.org/10.1007/BF00006849CrossRefGoogle Scholar
  32. Peters U., Koste W. & Westheide W. 1993. A quantitative method to extract moss-dwelling rotifers. Hydrobiologia 255 (1): 339–341. DOI:  https://doi.org/10.1007/BF00025857CrossRefGoogle Scholar
  33. Ricci C. 2001. Dormancy patterns in rotifers. Hydrobiologia 446 (1):1–11. DOI:  https://doi.org/10.1023/A:1017548418201CrossRefGoogle Scholar
  34. Ricci C., Caprioli M. & Santo N. 2004. Feeding and anhydrobiosis in bdelloid rotifers: A preparatory study for an experiment aboard the International Space Station. Invertebr. Biol. 123 (4): 283–288. DOI:  https://doi.org/10.1111/j.1744-7410.2004.tb00162.xCrossRefGoogle Scholar
  35. Sayre R.M. & Brunson L.K. 1971. Microfauna of moss habitats. Amer. Biol. Teacher 33 (2): 100–102 +105. DOI:  https://doi.org/10.2307/4443334CrossRefGoogle Scholar
  36. Segers H. 1995. Rotifera Volume 2. The Lecanidae. (Monogononta). Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, 6, 226 pp. ISBN: 90-5103-091-654Google Scholar
  37. Ter Braak C.J.F. & Šmilauer P. 2002. CANOCO Reference Manual and User’s. Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5) Ithaca, NY, USA: Microcomputer Power, 500 pp.Google Scholar
  38. Vlčková Š., Linhart J. & Uvíra V. 2001–2002. Permanent and temporary meiofauna of an aquatic moss Fontinalis antiperpyretica HEDW. Acta Univ. Palack. Olomuc. Fac. Rer. Nat. Biol. 39–40: 131–140.Google Scholar
  39. Warner B.G. & Chmielewski J.G. 1992. Testate amoebae (Protozoa) as indicators of drainage in a forested mire, northern Ontario, Canada. Arch. Protistenkunde 141 (3): 179–183. DOI:  https://doi.org/10.1016/S0003-9365(11)80067-9CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2017

Authors and Affiliations

  • Irena Bielańska-Grajner
    • 1
    Email author
  • Tomasz Mieczan
    • 2
  • Anna Cieplok
    • 3
  1. 1.Department of HydrobiologyUniversity of SilesiaKatowicePoland
  2. 2.Department of HydrobiologyUniversity of Life SciencesLublinPoland
  3. 3.Department of EcologyUniversity of SilesiaKatowicePoland

Personalised recommendations